lisdrianto hanindriyo
Content
Obesitas
Diabetes
Kardiovaskular
Kanker
Osteoporosis
Trend
Meningkatnya westernisasi, urbanisasi dan mekanisasi di hampir seluruh negara di seluruh dunia berpengaruh terhadap diet high-fat, high energy juga gaya hidup pasif
Seiring dengan meningkatnya obesity selama 30 tahun terakhir, prevalensi diabetes juga meningkat.
Di USA, 53% dari semua kematian wanita dengan BMI > 29 kg/m2 berhubungan dengan obesitas
Di negara berkembang obesity banyak terjadi pada wanita usia pertengahan
Indikator
Body Mass Index
Underweight < 18,5
Normal 18,5 – 24,9
Overweight 25
Pre-obese 25 – 29,9
Obese class I 30,0 – 34,9
Obese class II 35,0 – 39,9
Obese class III > 40,0
Lingkar Pinggang
Laki-laki : > 102 cm
Perempuan : > 88 cm
Faktor Etiologi
1. Protective
Lingkungan sekolah dan rumah
ASI eksklusif
2. Causative
Gaya hidup ‘pasif’
Pemasaran gencar makanan fast food/large portion, makanan rendah micronutrient, minuman soda TV target anak-anak dan remaja
Konsumsi tinggi minuman mengandung gula tiap gls/klng increase 60% prob of obesity
Faktor sosial ekonomi
Strategi Umum Pencegahan
1. Bayi dan anak :
Breast feeding
Menghindari penambahan gula pada makanan
Ibu Menerima kemampuan makan anak
Menjamin kecupukan mikronutrien untuk pertumbuhan anak
2. Remaja :
Meningkatkan gaya hidup aktif
Membatasi menonton TV (pasif dan iklan)
Meningkatkan makan sayur dan buah serta makanan tinggi serat
Membatasi makanan mikronutrien rendah
Mengurangi konsumsi soft drink dan minuman tinggi gula lainnya
Diabetes
Ditekankan pada type 2 (NIDDM)
Komplikasi: kebutaan, gaal ginjal, gangren, meningkatkan resiko infeksi, CHD dan stroke
Saat ini ada sekitar 150 juta kasus dan mungkin menjadi 2X pada 2025
Dulu banyak terjadi pada umur tua sekarang pada semua usia
Pemberian diet bertujuan menyesuaikan makanan dengan kesanggupan tubuh agar pasien mencapai keadaan faali normal.
Syarat :
Jumlah kalori ditentukan menurut umur, jenis kelamin, BB dan TB, aktivitas, suhu tubuh, kelainan metabolik
Jumlah KH disesuaikan dengan kesanggupan tubuh
Gula murni dilarang
Makanan cukup protein, mineral dan vitamin
Pemberian makanan disesuaikan dengan obat yang dipakai
Macam Kal Prot Lmk KH
Diet g g g
I 1100 50 30 160
II 1300 55 35 195
III 1500 60 40 225
IV 1700 65 45 260
V 1900 70 50 300
VI 2100 80 55 325
VII 2300 85 65 350
VIII 2500 90 65 390
I –III pasien yang terlalu gemuk
IV-V pasien dengan BB normal
VI-VIII pasien kurus atau dengan komplikasi
Kardiovaskular
CVD menempati urutan tertinggi dari penyakit tdak menular.
Penyebab pola makan tidak sehat, kurangnya aktivitas tubuh dan rokok.
overweight, tekanan darah tinggi
Pengurang resiko sayur dan buah, ikan dan minyak ikan (eicosappentaenoic acid dan docosahexaenoic acid), makanan tinggi linoleic acid dan potasium serta aktivitas fisik yang memadai.
folate, vit. B6, flavonoid
Faktor resiko myristic dan palmitic acid, trans fatty acid, intake sodium tinggi, alkohol dan overweight.
Rekomendasi
1. Lemak
Membatasi lemak dari daging dan susu, menghindari lemak hidrogenasi, menggunakan lemak tumbuhan sesuai takaran, konsumsi ikan atau sayur yang mengandung asam a-linoleic. Makanan lebih baik tidak digoreng.
2. Buah dan sayuran
Berguna karena kandungan phyto-nutrients, potasium dan serat. Jumlah yang dianjutkan 400-500 gram per hari.
3. Sodium
Penelitian : Dibatasi 70 mmol atau 1,7 gram per hari untuk menurunkan tekanan darah. Pencegahan kurang dari 5 gram per hari termasuk produk sodium lain (misal MSG).
4. Potasium
Harian sekitar 70-80 mmol yang dapat diperoleh dari buah dan sayuran
5. Makanan berserat
Sumber : buah, sayur dan sereal
6. Ikan
Konsumsi ikan secara teratur paling tidak setara dengan 200-500 mg epa dan dha. Vegetarian tanaman yang mengandung alpha linoleic acid.
8. Alkohol
Dilarang sama sekali
9. Aktivitas fisik
Paling tidak 30 menit sehari
KANKER
Faktor diet memiliki peran setelah rokok
Overweight adenocarcinoma esophagus
- micronutrient, konsumsi makanan dan minuman terlalu panas kanker rongga mulut, pharing dan esophagus
Ikan asin kanker nasopharing
Rekomendasi
Jaga BB
Berolah raga secara teratur
Tidak mengkonsumsi alkohol
Mengurangi makanan yang diasinkan
Mengurangi makanan yang mengandung aflatoxin
Mengkonsumsi sayur dan buah minimal 400 g per hari
Mengurangi daging siap saji/olahan
Tidak mengkonsumsi makanan yang terlalu panas
Mengurangi bahan tambahan pada makanan
OSTEOPOROSIS
Sangat dipengaruhi oleh asupan makanan terutama Calcium dan vitamin D.
Untuk kesehatan tulang diperlukan juga Zinc, copper, manganese, boron, Vit A, Vit C, Vit K, Vit B, potasium dan sodium.
Rekomendasi
Kalsium intake 400-500 mg per hari
Peningkatan asupan vit D dan calcium pada usia tua dapat mengurangi resiko fraktur
Belum dipastikan tapi perlu diperhatikan :
Meningkatkan aktivitas tubuh, mengurangi konsumsi sodium, meningkatkan konsumsi buah dan sayuran, menjaga BB ideal, mtidak merokok dan minum alkohol.
Tampilkan postingan dengan label Biologi. Tampilkan semua postingan
Tampilkan postingan dengan label Biologi. Tampilkan semua postingan
Selasa, 24 Februari 2009
ORAL HEALTH STATUS DAN NUTRISI
drg. Lisdrianto Hanindriyo, MPH
Content
Nutrisi – definisi
Kondisi oral dan manifestasi penyakit sistemik pada oral
Pengaruhnya terhadap intake nutrisi
Nutrisi/Gizi
Nutrisi :
zat-zat yang dimakan/dikonsumsi oleh manusia dan bagaimana tubuh memanfaatkan/menggunakannya prosesnya
Nutrien :
zat-zat yang didapatkan dari makanan dan dipergunakan oleh tubuh untuk proses pertumbuhan, pemeliharaan dan perbaikan
Ilmu gizi/nutrisi :
ilmu yang mempelajari nutrien dan bagaimana proses pengolahannya pencernaan, absorbsi, transportasi, metabolisme, interaksi, penyimpanan dan ekskresinya
Nutrien
6 jenis nutrien:
Karbohidrat
Lemak
Protein
Vitamin
Mineral dan air
Intake Nutrisi (illustrated)
Kondisi oral dan manifestasi penyakit sistemik pada oral
Geriatri - Edentulous (rahang tak bergigi)
Diabetes – Xerostomia, periodontitis, luksasi gigi, halitosis, stomatitis
Kanker dan terapi kanker – xerostomia, fibrosis otot, hilang gigi, paraestesi pengecapan
HIV/AIDS – infeksi fungal, burning mouth
dll
Pengaruh Gigi Hilang Terhadap Intake Nutrisi
Hildebrandt et al. (1997) berkurangnya jumlah gigi berhubungan dengan kecenderungan untuk menghindari makanan yang berserabut (daging/steak), renyah (wortel), dan makanan padat kering (roti).
Johansson et al. (1994) laki-laki yang edentulous memakan lebih sedikit buah dan sayuran dan intake serat lebih rendah. Perempuan edentulous memakan lebih banyak lemak. Baik laki-laki dan perempuan edentulous mengkonsumsi lebih banyak makanan manis daripada mereka yang dentate.
Joshipura et al (1996) edentulous mengkonsumsi lebih sedikit sayuran, kurang serat dan karoten, lebih banyak kolesterol, kalori dan lemak jenuh.
Sheiham et al (2001) subyek yang memiliki gigi lebih banyak memiliki intake energi, protein, lemak, karbohodrat, serat, kalsium, zat besi, asam pantotenal dan vitamin C dan E lebih tinggi.
Krall et al (1998) responden yang memakai gigi palsu yang sesuai memiliki intake lebih tinggi untuk serat, vitamin B6, asam folat, vitamin A,C dan D, karoten, thiamin, riboflavin magnesium, fosfor, dan zat besi.
Pengaruh Prothesa terhadap intake makanan
1. Krall et al (1998) individu dengan full denture mengkonsumsi lebih sedikit kalori, thiamin, zat besi, folate, vitamin A dan karoten daripada yang masih memiliki gigi.
2. Papas et al (1998) pasien dengan gigi palsu mengkonsumsi lebih banyak karbohidrat, gula dan kolesterol sedangkan konsumsi 19 macam vitamin dan protein menurun.
3. Laurin et al (1994) melaporkan bahwa individu yang memakai gigi palsu yang tidak baik (pengunyahan menjadi buruk) mengkonsumsi lebih sedikit buah dan sayuran.
Pengaruh gigi yang hilang terhadap status nutrisi
Blaum et al (1995) ada hubungan antara kesulitan mengunyah dengan berkurangnya berat badan
Sheiham et al (2001) subyek yang tidak memiliki gigi (edentate) memiliki rata-rata plasma level retinol, ascorbate dan tocopherol lebih rendah dari subyek yang masih memiliki gigi. Diantara subyek yang memiliki gigi, rata-rata tingkat plasma vitamin C secara positif berhubungan dengan peningkatan jumlah gigi yang beroklusi.
Elwood and Bates (1972) orang tua tanpa gigi atau tidak memakai gigi palsu, tingkat hemoglobin, vitamin B12 dan folat lebih rendah.
Kondisi Medically Compromised
Diabetes Mellitus :
Diabetes yang tidak terkontrol menyebabkan meningkatnya resiko penyakit gilut Penyakit periodontal, xerostomia, karies, dysgusia dan sindrom mulut terbakar.
Prosedur dental akan berhasil dalam kondisi diet terkontrol.
Kanker Oral
dan Pharyngeal
Terapi kanker seringkali menyebabkan komplikasi oral. Treatment radiasi pada area oropharyngeal menyebabkan hilangnya gigi, stomatitis yang sakit, xerostomia, fibrosis otot pengunyahan dan kehilangan indra pengecapan.
Treatment bedah menyebabkan berubahnya fungsi pengunyahan, kebutuhan energi dan nutrisi meningkat untuk penyembuhan, dan dapat berefek pada pengunyahan dan menelan secara permanen
Infeksi HIV
Pasien HIV memiliki resiko terkena oral disease seperti oral-pharyngeal fungal mulut terasa terbakar dan sakit dan dysphagia mengurangi nafsu makan
Sarcoma kaposi, kanker ganas oral pada HIV di satu pihak pasien sulit makan, di pihak lain pasien membutuhkan peningkatan asupan nutrisi
Polypharmacy
Pengobatan dengan berbagai obat seperti pada penyakit HIV, kanker, penyakit autoimun dan kardiovaskuler kemampuan orang untuk menelan, mencerna dan absorbsi makanan.
Efek obat antiretroviral, antiviral, antifungal, antiparasitic, antihipertensi, antidepresan, antihistamin, narkose, sedative dan antineoplastik diantaranya adalah xerostomia, stomatitis, berkurangnya aliran saliva, pengecapan berkurang dan ulser oral berkurangnya intake makanan.
Pengaruh Penyakit Mulut thd Nutrisi
Prevalensi periodontitis meningkat seiring meningkatnya BMI dan kurang fitness.
Penderita xerostomia cenderung menghindari sayur renyah (wortel), makanan kering (roti), dan makanan lengket (selai kacang). Intake energi, protein, serat, vitamin A,C dan B6, thiamin, riboflavin, kalsium dan zat besi lebih rendah dari orang sehat. Penderita xerostomia umumnya memiliki BMI rendah.
Penderita dysgeusia intake vitamin A, vitamin C dan Calcium akan berkurang seiring dengan keparahannya.
Penyakit mulut Gangguan pada intake nutrisi defisiensi nutrisi gangguan pada sistem tubuh
Content
Nutrisi – definisi
Kondisi oral dan manifestasi penyakit sistemik pada oral
Pengaruhnya terhadap intake nutrisi
Nutrisi/Gizi
Nutrisi :
zat-zat yang dimakan/dikonsumsi oleh manusia dan bagaimana tubuh memanfaatkan/menggunakannya prosesnya
Nutrien :
zat-zat yang didapatkan dari makanan dan dipergunakan oleh tubuh untuk proses pertumbuhan, pemeliharaan dan perbaikan
Ilmu gizi/nutrisi :
ilmu yang mempelajari nutrien dan bagaimana proses pengolahannya pencernaan, absorbsi, transportasi, metabolisme, interaksi, penyimpanan dan ekskresinya
Nutrien
6 jenis nutrien:
Karbohidrat
Lemak
Protein
Vitamin
Mineral dan air
Intake Nutrisi (illustrated)
Kondisi oral dan manifestasi penyakit sistemik pada oral
Geriatri - Edentulous (rahang tak bergigi)
Diabetes – Xerostomia, periodontitis, luksasi gigi, halitosis, stomatitis
Kanker dan terapi kanker – xerostomia, fibrosis otot, hilang gigi, paraestesi pengecapan
HIV/AIDS – infeksi fungal, burning mouth
dll
Pengaruh Gigi Hilang Terhadap Intake Nutrisi
Hildebrandt et al. (1997) berkurangnya jumlah gigi berhubungan dengan kecenderungan untuk menghindari makanan yang berserabut (daging/steak), renyah (wortel), dan makanan padat kering (roti).
Johansson et al. (1994) laki-laki yang edentulous memakan lebih sedikit buah dan sayuran dan intake serat lebih rendah. Perempuan edentulous memakan lebih banyak lemak. Baik laki-laki dan perempuan edentulous mengkonsumsi lebih banyak makanan manis daripada mereka yang dentate.
Joshipura et al (1996) edentulous mengkonsumsi lebih sedikit sayuran, kurang serat dan karoten, lebih banyak kolesterol, kalori dan lemak jenuh.
Sheiham et al (2001) subyek yang memiliki gigi lebih banyak memiliki intake energi, protein, lemak, karbohodrat, serat, kalsium, zat besi, asam pantotenal dan vitamin C dan E lebih tinggi.
Krall et al (1998) responden yang memakai gigi palsu yang sesuai memiliki intake lebih tinggi untuk serat, vitamin B6, asam folat, vitamin A,C dan D, karoten, thiamin, riboflavin magnesium, fosfor, dan zat besi.
Pengaruh Prothesa terhadap intake makanan
1. Krall et al (1998) individu dengan full denture mengkonsumsi lebih sedikit kalori, thiamin, zat besi, folate, vitamin A dan karoten daripada yang masih memiliki gigi.
2. Papas et al (1998) pasien dengan gigi palsu mengkonsumsi lebih banyak karbohidrat, gula dan kolesterol sedangkan konsumsi 19 macam vitamin dan protein menurun.
3. Laurin et al (1994) melaporkan bahwa individu yang memakai gigi palsu yang tidak baik (pengunyahan menjadi buruk) mengkonsumsi lebih sedikit buah dan sayuran.
Pengaruh gigi yang hilang terhadap status nutrisi
Blaum et al (1995) ada hubungan antara kesulitan mengunyah dengan berkurangnya berat badan
Sheiham et al (2001) subyek yang tidak memiliki gigi (edentate) memiliki rata-rata plasma level retinol, ascorbate dan tocopherol lebih rendah dari subyek yang masih memiliki gigi. Diantara subyek yang memiliki gigi, rata-rata tingkat plasma vitamin C secara positif berhubungan dengan peningkatan jumlah gigi yang beroklusi.
Elwood and Bates (1972) orang tua tanpa gigi atau tidak memakai gigi palsu, tingkat hemoglobin, vitamin B12 dan folat lebih rendah.
Kondisi Medically Compromised
Diabetes Mellitus :
Diabetes yang tidak terkontrol menyebabkan meningkatnya resiko penyakit gilut Penyakit periodontal, xerostomia, karies, dysgusia dan sindrom mulut terbakar.
Prosedur dental akan berhasil dalam kondisi diet terkontrol.
Kanker Oral
dan Pharyngeal
Terapi kanker seringkali menyebabkan komplikasi oral. Treatment radiasi pada area oropharyngeal menyebabkan hilangnya gigi, stomatitis yang sakit, xerostomia, fibrosis otot pengunyahan dan kehilangan indra pengecapan.
Treatment bedah menyebabkan berubahnya fungsi pengunyahan, kebutuhan energi dan nutrisi meningkat untuk penyembuhan, dan dapat berefek pada pengunyahan dan menelan secara permanen
Infeksi HIV
Pasien HIV memiliki resiko terkena oral disease seperti oral-pharyngeal fungal mulut terasa terbakar dan sakit dan dysphagia mengurangi nafsu makan
Sarcoma kaposi, kanker ganas oral pada HIV di satu pihak pasien sulit makan, di pihak lain pasien membutuhkan peningkatan asupan nutrisi
Polypharmacy
Pengobatan dengan berbagai obat seperti pada penyakit HIV, kanker, penyakit autoimun dan kardiovaskuler kemampuan orang untuk menelan, mencerna dan absorbsi makanan.
Efek obat antiretroviral, antiviral, antifungal, antiparasitic, antihipertensi, antidepresan, antihistamin, narkose, sedative dan antineoplastik diantaranya adalah xerostomia, stomatitis, berkurangnya aliran saliva, pengecapan berkurang dan ulser oral berkurangnya intake makanan.
Pengaruh Penyakit Mulut thd Nutrisi
Prevalensi periodontitis meningkat seiring meningkatnya BMI dan kurang fitness.
Penderita xerostomia cenderung menghindari sayur renyah (wortel), makanan kering (roti), dan makanan lengket (selai kacang). Intake energi, protein, serat, vitamin A,C dan B6, thiamin, riboflavin, kalsium dan zat besi lebih rendah dari orang sehat. Penderita xerostomia umumnya memiliki BMI rendah.
Penderita dysgeusia intake vitamin A, vitamin C dan Calcium akan berkurang seiring dengan keparahannya.
Penyakit mulut Gangguan pada intake nutrisi defisiensi nutrisi gangguan pada sistem tubuh
CHROMOSOME
Genetics: From Genes to Genomes (Second Edition)
Hartwell ● Hood ● Goldberg ● Reynolds ● Silver ● Veres
The Prokaryotic Chromosome
The bacterial genome is composed of one circular chromosome
4-5 Mb long
Condenses by supercoiling and looping into a densely packed nucleoid body
Chromosomes replicate inside cell and cell divides by binary fission
Chromosome
Each chromosome has a constriction point called the centromere, which divides the chromosome into two sections, or arms.
The short arm of the chromosome is labeled the p arm. The long arm of the chromosome is labeled the q arm.
Centromere structure and function
Characteristic shapes of chromosomes
Nilai Indeks Sentromer
Nilai Indeks Sentromer
Karyotype
A display of the paired homologues chromosomes from a cell
Allows determination of:
sex of an individual,
abnormal chromosome number,
other chromosome abnormalities,
etc.
A closer look at karyotypes: fully compacted metaphase chromosomes have unique, reproducible banding patterns
Banding patterns are highly reproducible
A closer look at karyotypes: fully compacted metaphase chromosomes have unique, reproducible banding patterns.
Banding patterns help locate genes
A closer look at karyotypes: fully compacted metaphase chromosomes have unique, reproducible banding patterns
Banding patterns can be used to analyze chromosomal differences between species
Can also be used to reveal cause of genetic disease
e.g., Downs syndrome – 3 copies of chromosome 21
Protein components of Chromosomes
Histone proteins abound the chromatin of all eukaryotic cells
Histones – small proteins with basic, positively charged amino acids lysine and arginine
Bind to and neutralize negatively charged DNA
Make up half of all chromatin protein by weight
Five types: H1, H2A, H2B, H3, and H4
Core histones make up nucleosome: H2A, H2B, H3, and H4
DNA and histone synthesis regulation correlate timing so both are synthesized together
High level of similarity of histones among diverse organisms
Protein components of Chromosome
Nonhistone proteins are a heterogeneous group
Half of proteins in chromatin are nonhistone
Large variety of nonhistone proteins – 200 – 2,000,000 in diploid genomes
Large variety of functions
Scaffold – backbone of chromosome
DNA replications – e.g., DNA polymerases
Chromosome segregation – e.g., motor proteins of kinetichores
Transcriptional regulation – largest group regulates transcription during gene expression
Occur in different amounts in different tissues because of variety of function
The nucleosome: The fundamental unit of chromosomal packaging arises from DNAs association with histones
Chromatin fibers with beads having diameter of about 100 A and strings having diameter of 20 A
The nucleosome: The fundamental unit of chromosomal packaging arises from DNAs association with histones
Bead is a nucleosome with about 160 bp of DNA wrapped twice around a core of 8 histones
40 bp of DNA link together nucleosomes
The nucleosome: the fundamental unit of chromosomal packaging arises from DNAs association with histones
X-ray diffraction analysis
DNA does not coil smoothly
Base sequences dictate preferred nucleosome positions along DNA
Spacing and structure affect genetic function
The nucleosome: The fundamental unit of chromosomal packaging arises from DNAs association with histones
Spacing of nucleosomes affects gene expression
Regions between nucleosomes available for interactions with proteins involved in expression, regulation, and further compaction
Determines how and whether certain proteins interact with specific sequences
Packaging into nucleosomes condenses DNA sevenfold
2 meters of DNA shortens to less than 0.25 meters
Models of higher level compaction seek to explain extreme compaction of chromosomes at mitosis
Radial loop-scaffold model for higher levels of compaction
Each loop contains 60-100 kb of DNA tethered (tertambat) by nonhistone scaffold proteins
Radial loop-scaffold model
The Chromosome Theory of Inheritance
Outline of Chromosome Theory of Inheritance
Observations and experiments that placed the hereditary material in the nucleus on the chromosomes
Mitosis ensures that every cell in an organism carries same set of chromosomes
Meiosis distributes one member of each chromosome pair to gamete cells
Gametogenesis, the process by which germ cells differentiate into gametes
Validation of the chromosome theory of inheritance
Evidence that Genes Reside in the Nucleus
1667 – Anton van Leeuwenhoek
Microscopist
Semen contains spermatozoa (sperm animals)
Hypothesized that sperm enter egg to achieve fertilization
1854-1874 – confirmation of fertilization through union of eggs and sperm
Recorded frog and sea urchin fertilization using microscopy and time-lapse drawings and micrographs
Evidence that Genes Reside in Chromosomes
1880s – innovations in microscopy and staining techniques identified thread-like structures
Provided a means to follow movement of chromosomes during cell division
Mitosis – two daughter cells contained same number of chromosomes as parent cell (somatic cells)
Meiosis – daughter cells contained half the number of chromosomes as the parents (sperm and eggs)
One Chromosome Pair Determines an Individual’s Sex
Walter Sutton – Studied great lubber grasshopper
Parent cells contained 22 chromosomes plus an X and a Y chromosome
Daughter cells contained 11 chromosomes and X or Y in equal numbers
Sex chromosome
Provide basis for sex determination
One sex has matching pair
Other sex has one of each type of chromosome
Sex determination in humans
Children receive only an X chromosome from mother but X or Y from father
At Fertilization, Haploid Gametes Produce Diploid Zygotes
Gamete contains one-half the number of chromosomes as the zygote
Haploid – cells that carry only a single chromosome set
Diploid – cells that carry two matching chromosome sets
n – the number of chromosomes in a haploid cell
2n – the number of chromosomes in a diploid cell
diploid vs haploid cell in
Drosophila
melanogaster
The number and shape of chromosomes vary from species to species
Anatomy of a chromosome
Homologous chromosomes match in size, shape, and banding patterns
Homologous chromosomes (homologs) contain the same set of genes
Genes may carry different alleles
Non-homologous chromosomes carry completely unrelated sets of genes
The cell cycle
Maintaining the Chromosome Number
Mitosis ensures that every cell in an organism carries the same chromosomes
Cell cycle – repeating pattern of cell growth and division
Alternates between interphase and mitosis
Interphase – period of cell cycle between divisions/cells grow and replicate chromosomes
G1 – gap phase – birth of cell to onset of chromosome replication/cell growth
S – synthesis phase – duplication of DNA
G2 – gap phase – end of chromosome replication to onset of mitosis
Chromosome replication during S phase of cell cycle
Interphase
Within nucleus
G1, S, and G2 phase – cell growth, protein synthesis, chromosome replication
Outside of nucleus
Formation of microtubules radiating out into cytoplasm crucial for interphase processes
Centrosome – organizing center for microtubules located near nuclear envelope
Centrioles – pair of small darkly stained bodies at center of centrosome in animals (not found in plants)
Mitosis – Sister chromatids separate
Prophase – chromosomes condense
Inside nucleus
Chromosomes condense into structures suitable for replication
Nucleoli begin to break down and disappear
Outside nucleus
Centrosomes which replicated during interphase move apart and migrate to opposite ends of the nucleus
Interphase microtubules disappear and are replaced by microtubules that rapidly grow from and contract back to centrosomal organizing centers
Mitosis - continued
Prometaphase
Nuclear envelope breaks down
Microtubules invade nucleus
Chromosomes attach to microtubules through kinetochore
Mitotic spindle – composed of three types of microtubules
Kinetochore microtubules – centrosome to kinetochore
Polar microtubules – centrosome to middle of cell
Astral microtubules – centrosome to cell’s periphery
Mitosis - continued
Metaphase – middle stage
Chromosomes move towards imaginary equator called metaphase plate
Mitosis - continued
Anaphase
Separation of sister chromatids allows each chromatid to be pulled towards spindle pole connected to by kinetochore microtubule
Mitosis – continued
Telophase
Spindle fibers disperse
Nuclear envelope forms around group of chromosomes at each pole
One or more nucleoli reappear
Chromosomes decondense
Mitosis complete
Mitosis - continued
Cytokinesis - cytoplasm divides
Starts during anaphase and ends in telophase
Animal cells – contractile ring pinches cells into two halves
Plant cells – cell plate forms dividing cell into two halves
The normal cell division
Cell Division in Prokaryotes
MEIOSIS
Meiosis produces haploid germ cells
Somatic cells – divide mitotically and make up vast majority of organism’s tissues
Germ cells – specialized role in the production of gametes
Arise during embryonic development in animals and floral development in plants
Undergo meiosis to produce haploid gametes
Gametes unite with gamete from opposite sex to produce diploid offspring
Meiosis: In The Beginning Two
Humans and many other complex multi-celled organisms incorporate genetic recombination in their reproduction
Reproduction in which there is a re-mixing of the genetic material is called sexual reproduction
Two cells, a sperm and an egg, unite to form a zygote, the single cell from which the organism develops
Meiosis is the process of producing sperm and eggs (gametes)
Gametes Are Haploid
Gametes must have half the genetic material of a normal cell
If the genetic material in the gametes was not halved, when they combined the zygote would have more genetic material than the parents
Meiosis is specialized cell division resulting in cells with half the genetic material of the parents
Gametes have exactly one set of chromosomes, this state is called haploid (1n)
Regular cells have two sets of chromosomes, this state is called diploid (2n)
Stages Of Meiosis
Meiosis resembles mitosis except that it is actually two divisions not one
These divisions are called Meiosis I and Meiosis II
Meiosis I results in haploid cells with chromosomes made up of two chromotids
Meiosis II is essentially mitosis on haploid cells
Stages of meiosis resemble mitosis with two critical differences: the first in prophase I and the second in Metaphase I
Stages Of Meiosis - Meiosis I
Prophase I - The beginning phase -
DNA which was unraveled and spread all over the nucleus is condensed and packaged
Homologous chromosomes (each made of two identical chromatids) come together and form tetrads (4 chromatids)
Crossing over, in which chromatids within tetrads exchange genetic material, occurs
Metaphase I - Middle stage - Tetrads line up along the equator of the cell
Stages Of Meiosis - Meiosis I
Anaphase I - One copy of each chromosome still composed of two chromatids moves to each pole of the cell
Telophase I - End stage - New nuclear membranes are formed around the chromosomes and cytokinesis (cytoplasm division) occurs resulting in two haploid daughter cells
Stages Of Meiosis - Meiosis II
Prophase II - Cells do not typically go into interphase between meiosis I and II, thus chromosomes are already condensed
Metaphase II - Chromosomes line up at the equator of the two haploid cells produced in meiosis I
Anaphase II - Chromosomes made up of two chromatids split to make chromosomes with one chromatid which migrate to the poles of the cells
Telophase II - Cytokinesis and reformation of the nuclear membrane in haploid cells each with one set of chromosomes made of one chromatid
Stages Of Meiosis: Meiosis I
Stages Of Meiosis: Meiosis II
Crossing Over
Gametogenesis involved mitosis and meiosis
Oogenesis – egg formation in humans
Diploid germ cells called oogonia multiply by mitosis to produce primary oocytes
Primary oocytes undergo meiosis I to produce one secondary oocyte and one small polar body (which arrests development)
Secondary oocyte undergoes meiosis II to produce one ovum and one small polar body
Polar bodies disintegrate (=hancur) leaving one large functional gamete
Oogenesis in humans
Gametogenesis
Spermatogenesis in humans
Symmetrical meiotic divisions produce four functional sperm
Begins in male testis in germ cells called spermatogonia
Mitosis produces diploid primary spermatocytes
Meiosis I produces two secondary spermatocytes per cell
Meiosis II produces four equivalent spermatids
Spematids mature into functional sperm
Spermatogenesis in humans
MeiosisChromosomes replicate onceNuclei divide twice
Comparison of Meiosis with Mitosis
Comparison of Meiosis I with Mitosis
Meiosis I:
Prophase I - pairing of homologous chromosomes
Metaphase I – homologous pairs line up at metaphase plate
Anaphase I – homologous chromosomes separate
Telophase I – daughter cells are haploid
Mitosis:
Prophase has no such pairing
Metaphase – chromosomes align at metaphase plate
Anaphase – sister chromatids separate
Telophase – diploid cells
Comparison of Meiosis II with Mitosis
The chromosome theory correlates Mendel’s laws with chromosome behavior during meiosis
Chromosome Behavior
Each cell contains two copies of each chromosome
Chromosome complements appear unchanged during transmission from parent to offspring
Homologous chromosomes pair and then separate to different gametes
Maternal and paternal copies of chromosome pairs separate without regard to the assortment of other homologous chromosome pairs
At fertilization an egg’s set of chromosomes unite with randomly encountered sperm’s chromosomes
In all cells derived from a fertilized egg, one half of chromosomes are of maternal origin, and half are paternal
Hartwell ● Hood ● Goldberg ● Reynolds ● Silver ● Veres
The Prokaryotic Chromosome
The bacterial genome is composed of one circular chromosome
4-5 Mb long
Condenses by supercoiling and looping into a densely packed nucleoid body
Chromosomes replicate inside cell and cell divides by binary fission
Chromosome
Each chromosome has a constriction point called the centromere, which divides the chromosome into two sections, or arms.
The short arm of the chromosome is labeled the p arm. The long arm of the chromosome is labeled the q arm.
Centromere structure and function
Characteristic shapes of chromosomes
Nilai Indeks Sentromer
Nilai Indeks Sentromer
Karyotype
A display of the paired homologues chromosomes from a cell
Allows determination of:
sex of an individual,
abnormal chromosome number,
other chromosome abnormalities,
etc.
A closer look at karyotypes: fully compacted metaphase chromosomes have unique, reproducible banding patterns
Banding patterns are highly reproducible
A closer look at karyotypes: fully compacted metaphase chromosomes have unique, reproducible banding patterns.
Banding patterns help locate genes
A closer look at karyotypes: fully compacted metaphase chromosomes have unique, reproducible banding patterns
Banding patterns can be used to analyze chromosomal differences between species
Can also be used to reveal cause of genetic disease
e.g., Downs syndrome – 3 copies of chromosome 21
Protein components of Chromosomes
Histone proteins abound the chromatin of all eukaryotic cells
Histones – small proteins with basic, positively charged amino acids lysine and arginine
Bind to and neutralize negatively charged DNA
Make up half of all chromatin protein by weight
Five types: H1, H2A, H2B, H3, and H4
Core histones make up nucleosome: H2A, H2B, H3, and H4
DNA and histone synthesis regulation correlate timing so both are synthesized together
High level of similarity of histones among diverse organisms
Protein components of Chromosome
Nonhistone proteins are a heterogeneous group
Half of proteins in chromatin are nonhistone
Large variety of nonhistone proteins – 200 – 2,000,000 in diploid genomes
Large variety of functions
Scaffold – backbone of chromosome
DNA replications – e.g., DNA polymerases
Chromosome segregation – e.g., motor proteins of kinetichores
Transcriptional regulation – largest group regulates transcription during gene expression
Occur in different amounts in different tissues because of variety of function
The nucleosome: The fundamental unit of chromosomal packaging arises from DNAs association with histones
Chromatin fibers with beads having diameter of about 100 A and strings having diameter of 20 A
The nucleosome: The fundamental unit of chromosomal packaging arises from DNAs association with histones
Bead is a nucleosome with about 160 bp of DNA wrapped twice around a core of 8 histones
40 bp of DNA link together nucleosomes
The nucleosome: the fundamental unit of chromosomal packaging arises from DNAs association with histones
X-ray diffraction analysis
DNA does not coil smoothly
Base sequences dictate preferred nucleosome positions along DNA
Spacing and structure affect genetic function
The nucleosome: The fundamental unit of chromosomal packaging arises from DNAs association with histones
Spacing of nucleosomes affects gene expression
Regions between nucleosomes available for interactions with proteins involved in expression, regulation, and further compaction
Determines how and whether certain proteins interact with specific sequences
Packaging into nucleosomes condenses DNA sevenfold
2 meters of DNA shortens to less than 0.25 meters
Models of higher level compaction seek to explain extreme compaction of chromosomes at mitosis
Radial loop-scaffold model for higher levels of compaction
Each loop contains 60-100 kb of DNA tethered (tertambat) by nonhistone scaffold proteins
Radial loop-scaffold model
The Chromosome Theory of Inheritance
Outline of Chromosome Theory of Inheritance
Observations and experiments that placed the hereditary material in the nucleus on the chromosomes
Mitosis ensures that every cell in an organism carries same set of chromosomes
Meiosis distributes one member of each chromosome pair to gamete cells
Gametogenesis, the process by which germ cells differentiate into gametes
Validation of the chromosome theory of inheritance
Evidence that Genes Reside in the Nucleus
1667 – Anton van Leeuwenhoek
Microscopist
Semen contains spermatozoa (sperm animals)
Hypothesized that sperm enter egg to achieve fertilization
1854-1874 – confirmation of fertilization through union of eggs and sperm
Recorded frog and sea urchin fertilization using microscopy and time-lapse drawings and micrographs
Evidence that Genes Reside in Chromosomes
1880s – innovations in microscopy and staining techniques identified thread-like structures
Provided a means to follow movement of chromosomes during cell division
Mitosis – two daughter cells contained same number of chromosomes as parent cell (somatic cells)
Meiosis – daughter cells contained half the number of chromosomes as the parents (sperm and eggs)
One Chromosome Pair Determines an Individual’s Sex
Walter Sutton – Studied great lubber grasshopper
Parent cells contained 22 chromosomes plus an X and a Y chromosome
Daughter cells contained 11 chromosomes and X or Y in equal numbers
Sex chromosome
Provide basis for sex determination
One sex has matching pair
Other sex has one of each type of chromosome
Sex determination in humans
Children receive only an X chromosome from mother but X or Y from father
At Fertilization, Haploid Gametes Produce Diploid Zygotes
Gamete contains one-half the number of chromosomes as the zygote
Haploid – cells that carry only a single chromosome set
Diploid – cells that carry two matching chromosome sets
n – the number of chromosomes in a haploid cell
2n – the number of chromosomes in a diploid cell
diploid vs haploid cell in
Drosophila
melanogaster
The number and shape of chromosomes vary from species to species
Anatomy of a chromosome
Homologous chromosomes match in size, shape, and banding patterns
Homologous chromosomes (homologs) contain the same set of genes
Genes may carry different alleles
Non-homologous chromosomes carry completely unrelated sets of genes
The cell cycle
Maintaining the Chromosome Number
Mitosis ensures that every cell in an organism carries the same chromosomes
Cell cycle – repeating pattern of cell growth and division
Alternates between interphase and mitosis
Interphase – period of cell cycle between divisions/cells grow and replicate chromosomes
G1 – gap phase – birth of cell to onset of chromosome replication/cell growth
S – synthesis phase – duplication of DNA
G2 – gap phase – end of chromosome replication to onset of mitosis
Chromosome replication during S phase of cell cycle
Interphase
Within nucleus
G1, S, and G2 phase – cell growth, protein synthesis, chromosome replication
Outside of nucleus
Formation of microtubules radiating out into cytoplasm crucial for interphase processes
Centrosome – organizing center for microtubules located near nuclear envelope
Centrioles – pair of small darkly stained bodies at center of centrosome in animals (not found in plants)
Mitosis – Sister chromatids separate
Prophase – chromosomes condense
Inside nucleus
Chromosomes condense into structures suitable for replication
Nucleoli begin to break down and disappear
Outside nucleus
Centrosomes which replicated during interphase move apart and migrate to opposite ends of the nucleus
Interphase microtubules disappear and are replaced by microtubules that rapidly grow from and contract back to centrosomal organizing centers
Mitosis - continued
Prometaphase
Nuclear envelope breaks down
Microtubules invade nucleus
Chromosomes attach to microtubules through kinetochore
Mitotic spindle – composed of three types of microtubules
Kinetochore microtubules – centrosome to kinetochore
Polar microtubules – centrosome to middle of cell
Astral microtubules – centrosome to cell’s periphery
Mitosis - continued
Metaphase – middle stage
Chromosomes move towards imaginary equator called metaphase plate
Mitosis - continued
Anaphase
Separation of sister chromatids allows each chromatid to be pulled towards spindle pole connected to by kinetochore microtubule
Mitosis – continued
Telophase
Spindle fibers disperse
Nuclear envelope forms around group of chromosomes at each pole
One or more nucleoli reappear
Chromosomes decondense
Mitosis complete
Mitosis - continued
Cytokinesis - cytoplasm divides
Starts during anaphase and ends in telophase
Animal cells – contractile ring pinches cells into two halves
Plant cells – cell plate forms dividing cell into two halves
The normal cell division
Cell Division in Prokaryotes
MEIOSIS
Meiosis produces haploid germ cells
Somatic cells – divide mitotically and make up vast majority of organism’s tissues
Germ cells – specialized role in the production of gametes
Arise during embryonic development in animals and floral development in plants
Undergo meiosis to produce haploid gametes
Gametes unite with gamete from opposite sex to produce diploid offspring
Meiosis: In The Beginning Two
Humans and many other complex multi-celled organisms incorporate genetic recombination in their reproduction
Reproduction in which there is a re-mixing of the genetic material is called sexual reproduction
Two cells, a sperm and an egg, unite to form a zygote, the single cell from which the organism develops
Meiosis is the process of producing sperm and eggs (gametes)
Gametes Are Haploid
Gametes must have half the genetic material of a normal cell
If the genetic material in the gametes was not halved, when they combined the zygote would have more genetic material than the parents
Meiosis is specialized cell division resulting in cells with half the genetic material of the parents
Gametes have exactly one set of chromosomes, this state is called haploid (1n)
Regular cells have two sets of chromosomes, this state is called diploid (2n)
Stages Of Meiosis
Meiosis resembles mitosis except that it is actually two divisions not one
These divisions are called Meiosis I and Meiosis II
Meiosis I results in haploid cells with chromosomes made up of two chromotids
Meiosis II is essentially mitosis on haploid cells
Stages of meiosis resemble mitosis with two critical differences: the first in prophase I and the second in Metaphase I
Stages Of Meiosis - Meiosis I
Prophase I - The beginning phase -
DNA which was unraveled and spread all over the nucleus is condensed and packaged
Homologous chromosomes (each made of two identical chromatids) come together and form tetrads (4 chromatids)
Crossing over, in which chromatids within tetrads exchange genetic material, occurs
Metaphase I - Middle stage - Tetrads line up along the equator of the cell
Stages Of Meiosis - Meiosis I
Anaphase I - One copy of each chromosome still composed of two chromatids moves to each pole of the cell
Telophase I - End stage - New nuclear membranes are formed around the chromosomes and cytokinesis (cytoplasm division) occurs resulting in two haploid daughter cells
Stages Of Meiosis - Meiosis II
Prophase II - Cells do not typically go into interphase between meiosis I and II, thus chromosomes are already condensed
Metaphase II - Chromosomes line up at the equator of the two haploid cells produced in meiosis I
Anaphase II - Chromosomes made up of two chromatids split to make chromosomes with one chromatid which migrate to the poles of the cells
Telophase II - Cytokinesis and reformation of the nuclear membrane in haploid cells each with one set of chromosomes made of one chromatid
Stages Of Meiosis: Meiosis I
Stages Of Meiosis: Meiosis II
Crossing Over
Gametogenesis involved mitosis and meiosis
Oogenesis – egg formation in humans
Diploid germ cells called oogonia multiply by mitosis to produce primary oocytes
Primary oocytes undergo meiosis I to produce one secondary oocyte and one small polar body (which arrests development)
Secondary oocyte undergoes meiosis II to produce one ovum and one small polar body
Polar bodies disintegrate (=hancur) leaving one large functional gamete
Oogenesis in humans
Gametogenesis
Spermatogenesis in humans
Symmetrical meiotic divisions produce four functional sperm
Begins in male testis in germ cells called spermatogonia
Mitosis produces diploid primary spermatocytes
Meiosis I produces two secondary spermatocytes per cell
Meiosis II produces four equivalent spermatids
Spematids mature into functional sperm
Spermatogenesis in humans
MeiosisChromosomes replicate onceNuclei divide twice
Comparison of Meiosis with Mitosis
Comparison of Meiosis I with Mitosis
Meiosis I:
Prophase I - pairing of homologous chromosomes
Metaphase I – homologous pairs line up at metaphase plate
Anaphase I – homologous chromosomes separate
Telophase I – daughter cells are haploid
Mitosis:
Prophase has no such pairing
Metaphase – chromosomes align at metaphase plate
Anaphase – sister chromatids separate
Telophase – diploid cells
Comparison of Meiosis II with Mitosis
The chromosome theory correlates Mendel’s laws with chromosome behavior during meiosis
Chromosome Behavior
Each cell contains two copies of each chromosome
Chromosome complements appear unchanged during transmission from parent to offspring
Homologous chromosomes pair and then separate to different gametes
Maternal and paternal copies of chromosome pairs separate without regard to the assortment of other homologous chromosome pairs
At fertilization an egg’s set of chromosomes unite with randomly encountered sperm’s chromosomes
In all cells derived from a fertilized egg, one half of chromosomes are of maternal origin, and half are paternal
Cell growth and differentiation
Siklus sel
Stimulator : IAA, sitokinin, GA
nutrient (sukrosa)
Inhibitor : ABA
Why is cell division important?
Life cycle of a living organism: birth, growth and death…
Individual cells have a life cycle too!
25 million cell divisions occur in your body EVERY SECOND!!!
Diseases such as cancer: when cell division goes wild… (half million deaths/year!)
Pentingnya pembelahan sel
Meningkatkan kemampuan tumbuh jaringan / organ
Informasi yang menentukan diferensiasi terjadi pada siklus pembelahan sel
Arah pembelahan sel menentukan posisi dan fungsi sel hasil pembelahan
Pembelahan sel
Pembelahan sel: Proses dimana satu sel membelah menjadi dua.
Meliputi 2 bagian :
* pembelahan nucleus
Cell Cycle
Mulai dari saat pembelahan sel ke pembelahan sel berikutnya
Ada dua fase:
M phase : fase mitosis
Interphase : replikasi
kromosom
Most of the time (90%),
the cell is in interphase
(non-dividing stage)
Interphase
Interphase is the metabolically active stage.
Three phases:
G1 (gap 1)
S (synthesis)
G2 (gap 2)
Interphase stages
Persiapan pembelahan sel terjadi selama interphase (Interphase is not part of mitosis)
G1 phase: (First Gap) period of intense biological activity:
1. cell is actively growing,
2. organelles enlarge and divide,
3. protein synthesized,
4. respiration, etc.
S phase: (Synthesis) DNA is duplicated
Interphase stages
G2 phase: (Second Gap) Sintesis protein meningkat, persiapan pembelahan sel mencapai tahap akhir
Akhir G2 phase merupakan awal
pembelahan sel (mitosis)
Chromosomes?
CHROMO = Colored; SOMA = Bodies
Carry the genetic information (DNA): all the genes of an organism…
Genes: basic units of heredity, contain information for making one RNA and usually one protein
Approx. 30,000 genes/human or plant
Chromosomes
Condensed DNA and proteins (chromatin) coiled up together.
S phase: replikasi DNA
Pada saat S phase terjadi duplikasi DNA (dapat diukur dg aplikasi bahan radioaktif 32P atau 3H-thymidine)
DNA is replicated by the enzyme………………………….
MITOSIS
Mitosis is the process of nuclear division
Consists of four stages:
1. Prophase
2. Metaphase
3. Anaphase
4. Telophase
Phases of Mitosis:
1. Prophase
Chromatin (DNA + proteins) mulai mengalami kondensasi dan menebal, membentuk chromosomes.
membrane nukleus dannucleolus menghilang.
Chromosomes bebas
didalam sitoplasma.
1. Prophase
Spindle starts to form
Spindle: a framework of microtubules thatpulls the chromosomes from the center ofthe cells to the poles.
(microtubules – fibers thatact like muscles)
2. Metaphase
Chromosomes line up on the cell’s equator
Each centromere is attached to a spindle fiber (microtubule)
Cell has two poles
At end of metaphase,centromeres divide
3. Anaphase
Sister chromatids are pulled to opposite ends of the cell – by contraction of the spindle fibers
Each chromatid is now considered one chromosome
Genetic material divided in 2 identical sets
4. Telophase
Nuclear membrane re-forms (2)
Chromatids unwind and lengthen: become indistinct (chromatin)
Two distinct nuclei are evident
Nucleolus reappears
Cell plate begins to appear
CYTOKINESIS
Cytoplasm division that separates two daughter nuclei into two cells
Cytokinesis begins in late anaphase, is completed by late telophase
Phragmoplast: vessicles, microtubules, and ER accumulates across center of dividing cell (Golgi)
Cell plate: forms in the middle of cell, becomes the cell wall separating two cells
Cytokinesis: Plants vs. animals
In animals, cell cleavage
In plants, cell plate forms, new cell wall
Kontrol siklus sel
Cyclin & cyclin-dependent kinase (CDKs)
Cyclin & cyclin-dependent kinase (CDKs)
Transisi G1 to S : tergantung pd bermacam gen
ekspresi gen tsb perlu faktor transkripsi E2F
Aktivitas E2P diatur oleh protein Rb
(retinoblastoma protein)
Pembelahan pada sel-sel yang telah dewasa : * natural * tanggapan terhadap stimulus lingkungan
Arah pembelahan sel
Is determined during late interphase
Microtubules di dalam sitoplasma
Become concentrated into a ring called the preprophase band
Arah dan simetri pembelahan sel penting dalam penentuan bentuk sel
If the planes of division of cells are parallel to the plane of the first division
A single file of cells will be produced
If the planes of division vary randomly
Asymmetrical cell division occurs
Mekanisme dan kontrol pembentangan sel
Meristem akar : 30 – 100 x lipat
Arah pembentangan berpengaruh pada bentuk organ dan arah pertumbuhan
Pada umumnya (tidak selalu) pembentangan sel terjadi setelah pembelahan sel
* pada umbi kentang : pembelahan dan pembentangan
terjadi bersamaan
Proses pembentangan sel :
* penyerapan air dan berbagai larutan yg lain
* vakuola bergabung membentuk central vacuole
* arah pembentangan dipengaruhi oleh orientasi
mikrofibril pada dinding sel
Hormon dan pemanjangan sel
Auksin
Konsentrasi optimum berbeda pada organ yang berbeda
Induksi plastisitas dinding sel
Giberelin
Loosening of cell wall
Senin, 23 Februari 2009
Asal usul kehidupan: Teori Evolusi
6.1. Evolusi kimiawi
6.2. Evolusi biologis
6.3. Teori evolusi Drwin
6.4. Teori evolusi modern
The origin & Evolutionary History of Life
How did life begin ?
Hipothesis: Chemical evolution
Early earth provide the conditions for chemical
evolution
Four conditions for chemical evolution:
The absence of oxygen
Energy to form organic molecules
Chemical building blocks: water, minerals, gases
Sufficient time for moleculesto accumulate
Harold Urey & Stanley Miller
Organic molecules formed on primitive earth
For steps are hypothesized in chemical evolution:
Small organic molecules formed spontaneously and
accumulated:
a. Prebiotic broth hypothesis
b. The iron-sulfur world hypothesis
2. Macromolecules assembleagedbfrom the samll organic molecules
3. Macromolecules assemblages called proptobionts
a. RNA world model
b. Natural selection at the molecular level
c. Directed evolution
4. Cells arouse from macromolecules assemblages
The first cells probably assembled from organic molecules
The first cells were prokaryotic heterotrophs (anaerobes)
Later autotrophs organism that produce their own molecules by photosynthetic arouse.
The evolution of photosynthesis: permited the evolution of aerobes
Eukaryotic cells arouse from prokaryotic cells: endosymbiont theory
The fossil record provide clues to the history of life
Earth history devided into 3 eras, each era devided into period which are devided into epoch
Precambrian time: 4.6 bya to 543 mya
Paleozoic era: microfossils: bacteria, protists, fungi and simple multicellular
Mesozoic era: non-flowering plansts, animals
Cenozoic era: modern order of mammals, birds
Evolutionary Tree of Life
6.2. Evolusi biologis
6.3. Teori evolusi Drwin
6.4. Teori evolusi modern
The origin & Evolutionary History of Life
How did life begin ?
Hipothesis: Chemical evolution
Early earth provide the conditions for chemical
evolution
Four conditions for chemical evolution:
The absence of oxygen
Energy to form organic molecules
Chemical building blocks: water, minerals, gases
Sufficient time for moleculesto accumulate
Harold Urey & Stanley Miller
Organic molecules formed on primitive earth
For steps are hypothesized in chemical evolution:
Small organic molecules formed spontaneously and
accumulated:
a. Prebiotic broth hypothesis
b. The iron-sulfur world hypothesis
2. Macromolecules assembleagedbfrom the samll organic molecules
3. Macromolecules assemblages called proptobionts
a. RNA world model
b. Natural selection at the molecular level
c. Directed evolution
4. Cells arouse from macromolecules assemblages
The first cells probably assembled from organic molecules
The first cells were prokaryotic heterotrophs (anaerobes)
Later autotrophs organism that produce their own molecules by photosynthetic arouse.
The evolution of photosynthesis: permited the evolution of aerobes
Eukaryotic cells arouse from prokaryotic cells: endosymbiont theory
The fossil record provide clues to the history of life
Earth history devided into 3 eras, each era devided into period which are devided into epoch
Precambrian time: 4.6 bya to 543 mya
Paleozoic era: microfossils: bacteria, protists, fungi and simple multicellular
Mesozoic era: non-flowering plansts, animals
Cenozoic era: modern order of mammals, birds
Evolutionary Tree of Life
EVOLUTION : Introduction to Darwinian Evolution
Learning objectives:
Discuss the historical development of the theory of evolution
Define evolution and explain the four premises of evolution by natural selection as proposed by Charles Darwin
Compare the synthetic theory of evolution with Darwin’s original theory of evolution
Summarize the evidence for evolution obtained from:
the fossil record,
comparative anatomy,
distribution of plants and animal (biogeography)
developmental biology,
molecular biology.
A. Introduction
biological diversity
evolution
population
species
microevolution (short term adaptation)
macroevolution (speciation)
B. Ideas about evolution originated before Darwin
Aristotle (384 – 322 B.C.) : natural affinities among organisms
Leonardo da Vinci (1452 – 1519): fossil, remain of extinct organisms
Jean Baptiste de Lamarck (1744 – 1829): Philosophie Zoologique
C. Darwin’s voyage was the basis for his theory of evolution
The H.M.S. Beagle voyage (1831)
Studying animals, plants` fossils and geological formations
Principles of Geology (Charles Lyell, 1830)
Artificial selection: colewort – cabbage, broccoli, Brussel’s sprout, cauliflower, collard greens, kale and kohlrabi.
Thomas Malthus (1798): population grow geometrically, but food supply grow arithmetically
D. Darwin proposed that evolution occurs by natural selection
The origin of species by means of Natural selection (1859)
Darwin’s mechanism of evolution by natural selection:
variation
overproduction
limits on population growth
differential of reproductive success
Natural Selection
Inherited variations favorable to survival tend to be preserved
BUT unfavorable variations tend to be eliminated
Adaptation: an evolutionary modification that improve survival & reproductive success in a given environment
Accumulation of modification might result new species
Natural selection
Alfred Russell Wallace (1823 –1913) had the same idea
Joint presentation of Darwin-Wallace at Linnean Society (London, 1858)
Contribution to the Natural Selection (Wallace, 1870)
E. The synthetic theory of evolution combines Darwin’s theory and genetics
At the population level: evolution ; the change of gene frequency
Evolution factors:
natural selection
mutation
gene flow (immigration or emmigrantion)
genetict drift
F. Many types of scientific evidences support evolution
The fossil record provides strong evidence of evolution
Comparative anatomy of related species demontrates similarities in their structure
The distribution of plants and animals supports evolution
Developmental biology is increasingly being used to explain evolution
Molecular comparisons among arganisms provides evidence for evolution
G. Bacteria and other organisms that cause infectious disese are evolving resistance to drug
Multiresistant-Drug TB : Mycobacterium tuberculosis
Antibiotic resistance : selection of resistant bacteria in the bacterial population
EVOLUTION AT POPULATION LEVEL
A. Learning objectives:
Define population, genetic equilibrium, and microevolution
Distinguish among genotype, phenotype and allele frequencies
Use the Hardy-Weinberg principle to solve problems involving populations
B. Calculation of :
genotype frequency
phenotype frequency
allele frequency:
The frequency of Homozygous dominant
The frequency of Heterozygous
The frequency of Homozygous recessive
C. Genetic equilibrium : the Hardy-Weinberg principle
p : the frequency of the dominant (A) allele in the population
q : the frequency of the recessive (a) allele in the population
p + q = 1 ( p = 1 – q; q – 1 = p)
(p + q)2 = (1)2
p2 + 2pq + q2 = 1
p2 : frequency of AA
2pq: frequency of Aa
q2: frequency of aa
1 : all the individuals in a population
D. Genetic equilibrium occurs if certain conditions are met:
Random mating
No net mutation
Large population size
No migration
No natural selection
Genotype Frequency: a population of 1000 individuals
Phenotype frequency
Allele frequency
Calculations
Individuals: diploid - has 2 alleles: thus 1000 individuals = 2000 alleles
490 AA individulals x 2 = 980 A
420 Aa individuals x 2 = 420 A + 420 a
90 aa individulas x 2 = 180 a
Total 1400 A + 600 a
Allele Frequency
Calculation of allele frequency & genotype frequency from the phenotype frequency
Always start Hardy-Weinberg calculation by determining the frequency of the homozygous recessive genotype (aa)
The frequency of aa genotype = 90/1000, thus the frequency of (q2) = 0.09
The frequency of a recessive allele (q) =√0.09
(q) = 0.3
Allele Frequency
p = 1 – q
p = 1 – 0.3
p = 0.7 (the frequency of dominant allele)
p2 = 0.7 x 0.7
p2 = 0.49 (the frequency of homozygous dominant individuals)
2pq =2(0.7 x 0.3)
= 0.42 (the frequency of heterozygous individuals)
Allele Frequency
Thus, q2 = 0.09 x 1000 = 90 individuals
p2 = 0.49 x 1000 = 490 individuals
2pq = 0.42 x 1000 = 420 individuals
This follow: p2 + 2pq + q2 = 1
(0.49) (0.42) (0.09)
Conclusion: the population is at genetic equilibrium !
Discuss the historical development of the theory of evolution
Define evolution and explain the four premises of evolution by natural selection as proposed by Charles Darwin
Compare the synthetic theory of evolution with Darwin’s original theory of evolution
Summarize the evidence for evolution obtained from:
the fossil record,
comparative anatomy,
distribution of plants and animal (biogeography)
developmental biology,
molecular biology.
A. Introduction
biological diversity
evolution
population
species
microevolution (short term adaptation)
macroevolution (speciation)
B. Ideas about evolution originated before Darwin
Aristotle (384 – 322 B.C.) : natural affinities among organisms
Leonardo da Vinci (1452 – 1519): fossil, remain of extinct organisms
Jean Baptiste de Lamarck (1744 – 1829): Philosophie Zoologique
C. Darwin’s voyage was the basis for his theory of evolution
The H.M.S. Beagle voyage (1831)
Studying animals, plants` fossils and geological formations
Principles of Geology (Charles Lyell, 1830)
Artificial selection: colewort – cabbage, broccoli, Brussel’s sprout, cauliflower, collard greens, kale and kohlrabi.
Thomas Malthus (1798): population grow geometrically, but food supply grow arithmetically
D. Darwin proposed that evolution occurs by natural selection
The origin of species by means of Natural selection (1859)
Darwin’s mechanism of evolution by natural selection:
variation
overproduction
limits on population growth
differential of reproductive success
Natural Selection
Inherited variations favorable to survival tend to be preserved
BUT unfavorable variations tend to be eliminated
Adaptation: an evolutionary modification that improve survival & reproductive success in a given environment
Accumulation of modification might result new species
Natural selection
Alfred Russell Wallace (1823 –1913) had the same idea
Joint presentation of Darwin-Wallace at Linnean Society (London, 1858)
Contribution to the Natural Selection (Wallace, 1870)
E. The synthetic theory of evolution combines Darwin’s theory and genetics
At the population level: evolution ; the change of gene frequency
Evolution factors:
natural selection
mutation
gene flow (immigration or emmigrantion)
genetict drift
F. Many types of scientific evidences support evolution
The fossil record provides strong evidence of evolution
Comparative anatomy of related species demontrates similarities in their structure
The distribution of plants and animals supports evolution
Developmental biology is increasingly being used to explain evolution
Molecular comparisons among arganisms provides evidence for evolution
G. Bacteria and other organisms that cause infectious disese are evolving resistance to drug
Multiresistant-Drug TB : Mycobacterium tuberculosis
Antibiotic resistance : selection of resistant bacteria in the bacterial population
EVOLUTION AT POPULATION LEVEL
A. Learning objectives:
Define population, genetic equilibrium, and microevolution
Distinguish among genotype, phenotype and allele frequencies
Use the Hardy-Weinberg principle to solve problems involving populations
B. Calculation of :
genotype frequency
phenotype frequency
allele frequency:
The frequency of Homozygous dominant
The frequency of Heterozygous
The frequency of Homozygous recessive
C. Genetic equilibrium : the Hardy-Weinberg principle
p : the frequency of the dominant (A) allele in the population
q : the frequency of the recessive (a) allele in the population
p + q = 1 ( p = 1 – q; q – 1 = p)
(p + q)2 = (1)2
p2 + 2pq + q2 = 1
p2 : frequency of AA
2pq: frequency of Aa
q2: frequency of aa
1 : all the individuals in a population
D. Genetic equilibrium occurs if certain conditions are met:
Random mating
No net mutation
Large population size
No migration
No natural selection
Genotype Frequency: a population of 1000 individuals
Phenotype frequency
Allele frequency
Calculations
Individuals: diploid - has 2 alleles: thus 1000 individuals = 2000 alleles
490 AA individulals x 2 = 980 A
420 Aa individuals x 2 = 420 A + 420 a
90 aa individulas x 2 = 180 a
Total 1400 A + 600 a
Allele Frequency
Calculation of allele frequency & genotype frequency from the phenotype frequency
Always start Hardy-Weinberg calculation by determining the frequency of the homozygous recessive genotype (aa)
The frequency of aa genotype = 90/1000, thus the frequency of (q2) = 0.09
The frequency of a recessive allele (q) =√0.09
(q) = 0.3
Allele Frequency
p = 1 – q
p = 1 – 0.3
p = 0.7 (the frequency of dominant allele)
p2 = 0.7 x 0.7
p2 = 0.49 (the frequency of homozygous dominant individuals)
2pq =2(0.7 x 0.3)
= 0.42 (the frequency of heterozygous individuals)
Allele Frequency
Thus, q2 = 0.09 x 1000 = 90 individuals
p2 = 0.49 x 1000 = 490 individuals
2pq = 0.42 x 1000 = 420 individuals
This follow: p2 + 2pq + q2 = 1
(0.49) (0.42) (0.09)
Conclusion: the population is at genetic equilibrium !
Silabus Matrikulasi
Pengantar
Struktur organisasi mahluk hidup
Biomolekul penyusun sel
Reproduksi Sel
Metabolisme
Bahan Genetik
Pola hereditas: Genetika Mendel
Teori evolusi: Asal usul kehidupan
Prinsip Ekologi: interaksi mahluk hidup
Bioteknologi
1. Pengantar
Biologi sebagai ilmu yang mempelajari mahluk hidup
Objek kajian Biologi: mahluk hidup
Ciri-ciri mahluk hidup:
Struktur organisasi mahluk hidup
Keanekaragaman Mahluk Hidup:
Domain bakteria: 1.Dunia Bakteria
Domain Arkhaea: 2., Dunia Arkhaea
Domain Eukarya:
Dunia Protista (Protozoa, Algae, Slime molds)
Dunia Fungi (Khamir, Kapang dan Cendawan)
Dunia Plantae (Tumbuhan Lumut, Paku dan Tumbuhan berbiji)
Dunia Animalia (Avertebrata dan Vertebrata)
Bagaimana dengan Virus ??
Apakah virus mahluk hidup atau bukan ?
Jelaskan alasan anda !
Metode Ilmiah: cara mempelajari objek kajian biologi
Observasi
Perumusan masalah
Perumusan hipotesis
Pengjian hipotesis
Penarikan simpulan
2. Struktur Mahluk Hidup
Biologi Sel
Struktur tumbuhan
Struktur hewan
3. Reproduksi Sel
1. Reproduksi sel prokaryotic
(Pembelahan Biner)
2. Reproduksi sel eukaryotic (Mitosis)
3. Pembentukan gamet pada tumbuhan
dan hewan tingkat tinggi (Meiosis)
4. Biomolekul penyusun sel
Karbohidrat
Protein
Lipid
Asam nukleat
5. Metabolisme
1. Katabolisme: penghasilan energi
2. Anabolisme: biosistesis
3. Pemecahan glukosa: glikolisis
4. Siklus Krebs
5. Rantai respirasi
6. Fermentasi
7. Fotosintesis: reaksi cahaya & reaksi
gelap
6. Bahan genetik
1. Kromosom sebagai pembawa sifat
genetik
2. Gen dan alel
3. DNA dan RNA sebagai bahan genetik
4. Struktur dan fungsi DNA dan RNA
5. Ekspresi gen: transkripsi
6. Sisntesis protein: translasi
7. Kode genetik
7. Pola hereditas: Genetika Mendel
1. Prinsip hereditas: pemisahan alel
sebelum pembentukan gamet
2. Alel pada kromosom
3. Monohibrid: homozygote, heterozygote
4. Dihibrid
5. Kelainan genetic pada manusia
6. Mutasi: perubahan bahan genetik
8. Teori Evolusi : Asal usul kehidupan
1. Evolusi kimiawi
2. Evolusi biologis
3. Teori evolusi Drwin
4. Teori evolusi modern
9. Prinsip ekologi: interaksi mahluk hidup
1. Ekologi populasi
2. Ekologi Komunitas
3. Ekosistem dan biosfer
4. Ekologi dan biogeografi
5. Manusia dam lingkungan
10. Bioteknologi
1. Prinsip bioteknologi modern
2. Rekayasa genetika
3. Pemanfaatan mikrobia dalam bioteknologi
4. Kultur jaringan dan kultur sel
Referensi:
Solomon, E.P., Berg, L.R. & Martin, D.W. 2002.. Biology, Sixth Edition., Brooks/Cole. Thomson Learning, United States.
Struktur organisasi mahluk hidup
Biomolekul penyusun sel
Reproduksi Sel
Metabolisme
Bahan Genetik
Pola hereditas: Genetika Mendel
Teori evolusi: Asal usul kehidupan
Prinsip Ekologi: interaksi mahluk hidup
Bioteknologi
1. Pengantar
Biologi sebagai ilmu yang mempelajari mahluk hidup
Objek kajian Biologi: mahluk hidup
Ciri-ciri mahluk hidup:
Struktur organisasi mahluk hidup
Keanekaragaman Mahluk Hidup:
Domain bakteria: 1.Dunia Bakteria
Domain Arkhaea: 2., Dunia Arkhaea
Domain Eukarya:
Dunia Protista (Protozoa, Algae, Slime molds)
Dunia Fungi (Khamir, Kapang dan Cendawan)
Dunia Plantae (Tumbuhan Lumut, Paku dan Tumbuhan berbiji)
Dunia Animalia (Avertebrata dan Vertebrata)
Bagaimana dengan Virus ??
Apakah virus mahluk hidup atau bukan ?
Jelaskan alasan anda !
Metode Ilmiah: cara mempelajari objek kajian biologi
Observasi
Perumusan masalah
Perumusan hipotesis
Pengjian hipotesis
Penarikan simpulan
2. Struktur Mahluk Hidup
Biologi Sel
Struktur tumbuhan
Struktur hewan
3. Reproduksi Sel
1. Reproduksi sel prokaryotic
(Pembelahan Biner)
2. Reproduksi sel eukaryotic (Mitosis)
3. Pembentukan gamet pada tumbuhan
dan hewan tingkat tinggi (Meiosis)
4. Biomolekul penyusun sel
Karbohidrat
Protein
Lipid
Asam nukleat
5. Metabolisme
1. Katabolisme: penghasilan energi
2. Anabolisme: biosistesis
3. Pemecahan glukosa: glikolisis
4. Siklus Krebs
5. Rantai respirasi
6. Fermentasi
7. Fotosintesis: reaksi cahaya & reaksi
gelap
6. Bahan genetik
1. Kromosom sebagai pembawa sifat
genetik
2. Gen dan alel
3. DNA dan RNA sebagai bahan genetik
4. Struktur dan fungsi DNA dan RNA
5. Ekspresi gen: transkripsi
6. Sisntesis protein: translasi
7. Kode genetik
7. Pola hereditas: Genetika Mendel
1. Prinsip hereditas: pemisahan alel
sebelum pembentukan gamet
2. Alel pada kromosom
3. Monohibrid: homozygote, heterozygote
4. Dihibrid
5. Kelainan genetic pada manusia
6. Mutasi: perubahan bahan genetik
8. Teori Evolusi : Asal usul kehidupan
1. Evolusi kimiawi
2. Evolusi biologis
3. Teori evolusi Drwin
4. Teori evolusi modern
9. Prinsip ekologi: interaksi mahluk hidup
1. Ekologi populasi
2. Ekologi Komunitas
3. Ekosistem dan biosfer
4. Ekologi dan biogeografi
5. Manusia dam lingkungan
10. Bioteknologi
1. Prinsip bioteknologi modern
2. Rekayasa genetika
3. Pemanfaatan mikrobia dalam bioteknologi
4. Kultur jaringan dan kultur sel
Referensi:
Solomon, E.P., Berg, L.R. & Martin, D.W. 2002.. Biology, Sixth Edition., Brooks/Cole. Thomson Learning, United States.
Introduction
I. What is biology ?
II. Definition of life:
III. Transmission of information: IV. Evolution: primary unifying concept
V. Hierarchi of biological organization
VI. Biological diversity
VII. Life requires energy supply
VIII. Biology as a science (Scientific method)
Introduction: Overview of biology
I. What is biology ?
II. Definition of life:
Cellular organization
Growth and development
Regulation of metabolic processes
Homeostasis
Reproduction
Heredity
III. Transmission of information:
1. DNA molecules
Genetic information
2.Chemical & electrical signal
Hormon
Nerve cells
IV. Evolution: primary unifying concept
Species adaptation
Natural selection
Selective pressure
V. Hierarchi of biological organization
1. Organismal level of organization
Atoms and molecules
Macromolecules (Biomolecules)
Subcelluar organells
Cells
Tissues
Organs
Organ system
Organisms
2.Ecological level of organization
Population
Community
Ecosystem
Biosphere
VI. Biological diversity
Naming organisms (binomial system)
Scientific names:
Bahasa Latin atau dilatinkan
Terdiri dari dua kata
Kata pertama: nama Genus
Kata ke-dua : penunjuk spesies
Contoh:
Homo sapiens
Oryza sativa
Columba livia
Mycobacterium tuberculosis
Rhyzopus oligosporus
Taxonomic hierarchical of classification
Domain
Kingdom
Phylum
Classis
Ordo
Familia
Genus
Species
Txonomic hierarchical of classification
Kingdoms of life:
Three domains: Six Kingdoms:
I. Archaea 1. Archaea
II. Bacteria 2. Bacteria
III.Eukarya 3. Protista
4. Fungi
5. Plantae
6. Animalia
VII. Life requires energy supply
1. Energy flows through organisms
Metabolism: catabolism & anabolism
2.Energy flows through ecosystem
Energy flows through food chains
Scientific Method
VIII. Biology as a science (Scientific method)
Scientific thinking process
Scientific observation and question
Hypothesis: possible explanation to account for observation
Scientific experiments: testing hypothesis
Results of experiments
Scientific theory: e.g. Evolutionary theory
Ethical dimensions of science
II. Definition of life:
III. Transmission of information: IV. Evolution: primary unifying concept
V. Hierarchi of biological organization
VI. Biological diversity
VII. Life requires energy supply
VIII. Biology as a science (Scientific method)
Introduction: Overview of biology
I. What is biology ?
II. Definition of life:
Cellular organization
Growth and development
Regulation of metabolic processes
Homeostasis
Reproduction
Heredity
III. Transmission of information:
1. DNA molecules
Genetic information
2.Chemical & electrical signal
Hormon
Nerve cells
IV. Evolution: primary unifying concept
Species adaptation
Natural selection
Selective pressure
V. Hierarchi of biological organization
1. Organismal level of organization
Atoms and molecules
Macromolecules (Biomolecules)
Subcelluar organells
Cells
Tissues
Organs
Organ system
Organisms
2.Ecological level of organization
Population
Community
Ecosystem
Biosphere
VI. Biological diversity
Naming organisms (binomial system)
Scientific names:
Bahasa Latin atau dilatinkan
Terdiri dari dua kata
Kata pertama: nama Genus
Kata ke-dua : penunjuk spesies
Contoh:
Homo sapiens
Oryza sativa
Columba livia
Mycobacterium tuberculosis
Rhyzopus oligosporus
Taxonomic hierarchical of classification
Domain
Kingdom
Phylum
Classis
Ordo
Familia
Genus
Species
Txonomic hierarchical of classification
Kingdoms of life:
Three domains: Six Kingdoms:
I. Archaea 1. Archaea
II. Bacteria 2. Bacteria
III.Eukarya 3. Protista
4. Fungi
5. Plantae
6. Animalia
VII. Life requires energy supply
1. Energy flows through organisms
Metabolism: catabolism & anabolism
2.Energy flows through ecosystem
Energy flows through food chains
Scientific Method
VIII. Biology as a science (Scientific method)
Scientific thinking process
Scientific observation and question
Hypothesis: possible explanation to account for observation
Scientific experiments: testing hypothesis
Results of experiments
Scientific theory: e.g. Evolutionary theory
Ethical dimensions of science
Metabolisme
Metabolisme: reaksi kimiawi terarah dalam sel yang dikatalisis oleh enzim
Katabolisme : disimilasi
Anabolisme: assimilasi-biosintesis
Fotosintesis
Katabolisme Glukosa
Respirasi Aerobik
Fermentasi
Respirasi Anaerobik
Respirasi Aerobik
Glikolisis
Siklus Krebs
Rantai Respirasi
Fermentasi
Fermentasi Alkohol (Etanol)
Fermentasi Asam Laktat
Respirasi Anaerobik
Penggunaan bahan teroksidasi sebagai akseptor elektron terakhir:
Nitrat Nitrit
Sulfat H2S
CO2 CH4
Anabolisme: Biosisntesis
Biosintesis Karbohidrat
Biosisntesis Protein
Biosintesis Asam Nukleat
Biosintesis Lipid
Fotosintesis
Reaksi Cahaya (Fotosistem II dan I)
Reaksi Gelap (Siklus Calvin-Benson)
Katabolisme : disimilasi
Anabolisme: assimilasi-biosintesis
Fotosintesis
Katabolisme Glukosa
Respirasi Aerobik
Fermentasi
Respirasi Anaerobik
Respirasi Aerobik
Glikolisis
Siklus Krebs
Rantai Respirasi
Fermentasi
Fermentasi Alkohol (Etanol)
Fermentasi Asam Laktat
Respirasi Anaerobik
Penggunaan bahan teroksidasi sebagai akseptor elektron terakhir:
Nitrat Nitrit
Sulfat H2S
CO2 CH4
Anabolisme: Biosisntesis
Biosintesis Karbohidrat
Biosisntesis Protein
Biosintesis Asam Nukleat
Biosintesis Lipid
Fotosintesis
Reaksi Cahaya (Fotosistem II dan I)
Reaksi Gelap (Siklus Calvin-Benson)
Tanaman obat & bakteri penyebab sakit gigi
Tea Fights Cavities, Reduces Plaque
ScienceDaily (May 24, 2001) — Drinking tea may help fight cavities. A group of researchers from the University of Illinois
Dr. Wu and her colleagues found that compounds in black tea were capable of killing or suppressing growth and acid production of cavity-causing bacteria in dental plaque. Black tea also affects the bacterial enzyme glucosyltranferase which is responsible for converting sugars into the sticky matrix material that plaque uses to adhere to teeth. In addition, certain plaque bacteria, upon exposure to black tea, lost their ability to form the clumpy aggregates with other bacteria in plaque, thereby reducing the total mass of the dental plaque.
Raisins Fight Oral BacteriaScienceDaily (June 8, 2005) — Compounds found in raisins fight bacteria in the mouth that cause cavities and gum disease, according to researchers at the University of Illinois at Chicago.
five phytochemicals in Thompson seedless raisins: oleanolic acid, oleanolic aldehyde, betulin, betulinic acid and 5-(hydroxymethyl)-2-furfural.
Oleanolic acid, oleanolic aldehyde, and 5-(hydroxymethyl)-2-furfural inhibited the growth of two species of oral bacteria: Streptococcus mutans, which causes cavities, and Porphyromonas gingivalis, which causes periodontal disease. The compounds were effective against the bacteria at concentrations ranging from about 200 to 1,000 micrograms per milliliter.
Betulin and betulinic acid were less effective, requiring much higher concentrations for similar antimicrobial activity.
At a concentration of 31 micrograms per milliliter, oleanolic acid also blocked S. mutans adherence to surfaces. Adherence is crucial for the bacteria to form dental plaque, the sticky biofilm that accumulates on teeth. After a sugary meal, these bacteria release acids that erode the tooth enamel.
Raisin (Kismis) contains mainly fructose and glucose, not sucrose, the main culprit in oral disease
Sweet Magnolia: Tree Bark Extract Fights Bad Breath And Tooth Decay
ScienceDaily (Nov. 20, 2007) — "Sweet magnolia" does more than describe the fragrant blossoms of a popular evergreen tree. It also applies to magnolia bark's effects on human breath. Scientists in Illinois are reporting that breath mints made with magnolia bark extract kill most oral bacteria that cause bad breath and tooth decay within 30 minutes. The extract could be a boon for oral health when added to chewing gum and mints.
New Bacterial Species Found In Human Mouth
ScienceDaily (Aug. 11, 2008)
Scientists have discovered a new species of bacteria in the mouth. The finding could help scientists to understand tooth decay and gum disease and may lead to better treatments, according to research published in the August issue of the International Journal of Systematic and Evolutionary Microbiology.
"The healthy human mouth is home to a tremendous variety of microbes including viruses, fungi, protozoa and bacteria," said Professor William Wade from King's College London Dental Institute. "The bacteria are the most numerous: there are 100 million in every millilitre of saliva and more than 600 different species in the mouth. Around half of these have yet to be named and we are trying to describe and name the new species."
Scientists studied healthy tissue as well as tumours in the mouth and found three strains of bacteria called Prevotella that could not be identified. Prevotella species are part of the normal microbial flora in humans and are also associated with various oral diseases and infections in other parts of the body. The researchers named the new species Prevotella histicola; histicola means 'inhabitant of tissue'.
ScienceDaily (May 24, 2001) — Drinking tea may help fight cavities. A group of researchers from the University of Illinois
Dr. Wu and her colleagues found that compounds in black tea were capable of killing or suppressing growth and acid production of cavity-causing bacteria in dental plaque. Black tea also affects the bacterial enzyme glucosyltranferase which is responsible for converting sugars into the sticky matrix material that plaque uses to adhere to teeth. In addition, certain plaque bacteria, upon exposure to black tea, lost their ability to form the clumpy aggregates with other bacteria in plaque, thereby reducing the total mass of the dental plaque.
Raisins Fight Oral BacteriaScienceDaily (June 8, 2005) — Compounds found in raisins fight bacteria in the mouth that cause cavities and gum disease, according to researchers at the University of Illinois at Chicago.
five phytochemicals in Thompson seedless raisins: oleanolic acid, oleanolic aldehyde, betulin, betulinic acid and 5-(hydroxymethyl)-2-furfural.
Oleanolic acid, oleanolic aldehyde, and 5-(hydroxymethyl)-2-furfural inhibited the growth of two species of oral bacteria: Streptococcus mutans, which causes cavities, and Porphyromonas gingivalis, which causes periodontal disease. The compounds were effective against the bacteria at concentrations ranging from about 200 to 1,000 micrograms per milliliter.
Betulin and betulinic acid were less effective, requiring much higher concentrations for similar antimicrobial activity.
At a concentration of 31 micrograms per milliliter, oleanolic acid also blocked S. mutans adherence to surfaces. Adherence is crucial for the bacteria to form dental plaque, the sticky biofilm that accumulates on teeth. After a sugary meal, these bacteria release acids that erode the tooth enamel.
Raisin (Kismis) contains mainly fructose and glucose, not sucrose, the main culprit in oral disease
Sweet Magnolia: Tree Bark Extract Fights Bad Breath And Tooth Decay
ScienceDaily (Nov. 20, 2007) — "Sweet magnolia" does more than describe the fragrant blossoms of a popular evergreen tree. It also applies to magnolia bark's effects on human breath. Scientists in Illinois are reporting that breath mints made with magnolia bark extract kill most oral bacteria that cause bad breath and tooth decay within 30 minutes. The extract could be a boon for oral health when added to chewing gum and mints.
New Bacterial Species Found In Human Mouth
ScienceDaily (Aug. 11, 2008)
Scientists have discovered a new species of bacteria in the mouth. The finding could help scientists to understand tooth decay and gum disease and may lead to better treatments, according to research published in the August issue of the International Journal of Systematic and Evolutionary Microbiology.
"The healthy human mouth is home to a tremendous variety of microbes including viruses, fungi, protozoa and bacteria," said Professor William Wade from King's College London Dental Institute. "The bacteria are the most numerous: there are 100 million in every millilitre of saliva and more than 600 different species in the mouth. Around half of these have yet to be named and we are trying to describe and name the new species."
Scientists studied healthy tissue as well as tumours in the mouth and found three strains of bacteria called Prevotella that could not be identified. Prevotella species are part of the normal microbial flora in humans and are also associated with various oral diseases and infections in other parts of the body. The researchers named the new species Prevotella histicola; histicola means 'inhabitant of tissue'.
Respirasi sel
Overview Respirasi sel
Respirasi sel : pelepasan energi dari karbohidrat dan sintesis ATP
Perlu oksigen (O2)
Melepaskan karbondioksida (CO2)
glucose split to carbon dioxide and water.
Oksidasi glukosa (exergonic) akan mendorong sintesis ATP (endergonic), coupled reaction
Satu molekul glukosa menghasilkan 36 to 38 molekul ATP (efficiency of approx. 40%)
NAD+ and FAD
Nicotinamide adenine dinucleotide), flavin adenine dinucleotide
Coenzymes
NAD+ used more often
accept two electrons plus a hydrogen ion (H+) Reduced or oxidized?
The NAD+ cycle
Fase pemecahan molekul glukosa
Oksidasi glukosa dengan menghilangkan atom hidrogen melibatkan 4 fase
Glycolysis – pemecahan molekul glukosa menjadi 2 molekul asam piruvat dalam sitoplasma; no oxygen needed; yields 2 ATP
Transition reaction – piruvat dioksidasi menjadi gugus asetil dengan 2-carbon, dikatalisis oleh CoA (acetyl CoA); CO2 is removed; twice per glucose molecule
Citric acid cycle –reaksi oksidasi siklis yang melepaskan CO2 , menghasilkan satu molekul, NADH, FADH; berlangsung 2 kali per molekul glukosa
Electron transport system – a series of carriers that accept electrons removed from glucose and pass them from one carrier to the next until the final receptor, O2 is reached; water is produced; energy is released and used to synthesize 32 to 34 ATP
If oxygen is not available, fermentation occurs in the cytoplasm instead of proceeding to cellular respiration.
The four phases of complete glucose breakdown
Diluar mitokondria: Glycolysis
Glycolysis berlangsung di sitoplasma
dan merupakan reaksi pemecahan glukosa menjadi 2 molekul asam piruvat
Glycolysis is found in all organisms
Glycolysis does not require oxygen.
(Insert Fig. 7.4a)
Energy-Investment Steps
two ATP are used to activate glucose,
Glucose splits into two C3 molecules (PGAL).
PGAL carries a phosphate group from ATP.
From this point on, each C3 molecule undergoes the same series of reactions.
Glycolysis
Energy-Harvesting Steps
Oksidasi PGAL berlangsung dengan menghilangkan elektron dan diikuti dengan ion hidrogen, keduanya ditangkap oleh koenzim NAD+:
2 NAD+ + 4H → 2 NADH + 2 H+
The oxidation of PGAL and subsequent substrates results in four high-energy phosphate groups used to synthesize ATP in substrate-level phosphorylation.
Glycolysis summary
Inputs:
Glucose
2 NAD+
2 ATP
4 ADP + 2 P
Jika tersedia oksigen- pyruvate enters the mitochondria.
Jika tidak tersedia oxygen, fermentation occurs
Fermentation - anaeorbic (does not require oxygen), in humans lactic acid is produced.
Fermentation
Review
mitochondrion –
double membrane
intermembrane space between the two layers.
Cristae -folds of inner membrane that jut out into the matrix, the innermost compartment
transition reaction and citric acid cycle occur in the matrix
the electron transport system is located in the cristae.
Transition Reaction
1) connects glycolysis to the citric acid cycle
2) Pyruvate is converted to a C2 acetyl group attached to coenzyme A (together called acetyl CoA)
3) CO2 is released.
4) NAD+ is converted to NADH + H+
Citric Acid Cycle
1) Jalur metabolisme siklis yang berlangsung pada matriks mitokondria
2) acetylCoA joins a C4 molecule, and C6 citrate results.
AcetylCoA will be oxidized to CoA and 2 CO2 molecules.
4) oxidation occurs when NAD+ accepts electrons (happens 3 times) and FAD accepts electrons once.
Gain 1 ATP per acetyl CoA (substrate-level phosphorylation)
Citric acid cycle inputs and outputs per glucose molecule
Inputs:
2 acetyl groups
6 NAD+
2 FAD
2 ADP + 2 P
Electron Transport System
located in the cristae of mitochondria
series of protein carriers (some are cytochromes), pass electrons from one to the other.
3) electrons removed from NADH and FADH2 and enter the electron transport system.
pair of electrons is passed from carrier to carrier
energy is released and used to form ATP molecules by (oxidative phosphorylation)
6) Oxygen receives energy-spent electrons at the end of the electron transport system.
7) oxygen combines with hydrogen, and water forms:
Where did the hydrogen come from?
Organization of Cristae
electron transport system is located in the cristae
consists of protein complexes and mobile carriers.
The carriers use the energy released by electrons as they move down the carriers to pump H+ from the matrix into the intermembrane space of the mitochondrion.
pH gradient is established with few H+ in the matrix and many in the intermembrane space.
Is the pH of the matrix high or low?
Is the pH of the intermembrane space high or low?
cristae contain an ATP synthase complex through which hydrogen ions
Which way do they flow?
Energy used to synthesis ATP (chemiosmosis)
Accounting of energy yield per glucose molecule breakdown
Advantages and Disadvantages of Fermentation
Fermentation can provide a rapid burst of ATP in muscle cells, even when oxygen is in limited supply.
Lactate, however, is toxic to cells.
Initially, blood carries away lactate as it forms; eventually lactate builds up, lowering cell pH, and causing muscles to fatigue.
Oxygen debt occurs, and the liver must reconvert lactate to pyruvate.
Efficiency of Fermentation
Two ATP produced during fermentation are equivalent to 14.6 kcal; complete oxidation of glucose to CO2 and H2O represents a yield of 686 kcal per molecule of glucose.
Thus, fermentation is only 2.1% efficient compared to cellular respiration.
(14.6/686) x 100 = 2.1%
Metabolic Pool and Biosynthesis
Degradative reactions, which occur in catabolism, break down molecules and are exergonic.
Synthetic reactions, which occur during anabolism, tend to be endergonic.
Catabolism drives anabolism because catabolism results in ATP buildup used by anabolism.
Catabolism
Molecules aside from glucose can enter the catabolic reactions of cellular respiration.
When a fat is used for energy, it breaks down into glycerol and three fatty acids; glycerol is converted to PGAL, and the fatty acids are converted to acetyl-CoA, thus both types of molecules can enter the citric acid cycle.
The carbon backbones of amino acids can also enter the reactions of cellular respiration to provide energy.
The amino acid first undergoes deamination, or the removal of the amino group; the amino group becomes ammonia (NH3) and is excreted.
Where the carbon portion of the amino acid enters the reactions of respiration depends on its number of carbons.
Anabolism
The substrates of the pathways of cellular respiration can also be used as starting materials for synthetic reactions.
This is the cell’s metabolic pool, in which one type of molecule can be converted into another.
In this way, dietary carbohydrates can be converted to stored fat, and come substrates of the citric acid cycle can be transaminated into amino acids.
The metabolic pool concept
Chapter Summary
During cellular respiration, glucose is oxidized to CO2 and H2O; this exergonic reaction drives ATP buildup.
Four phases of cellular respiration occur:
1) Glycolysis, in the cytosol, is the breakdown of glucose to two pyruvates, with the formation of 2 NADH and net gain of 2 ATP.
2) A transition reaction takes place to convert pyruvate into acetyl-CoA, with CO2 given off; two NADH result in total.
3) The acetyl group enters the citric acid cycle, located in the matrix of the mitochondria; complete oxidation follows, and two CO2, three NADH, one FADH2, and two ATP are formed – the entire cycle runs twice per glucose molecule.
4) The final stage of glucose breakdown is the electron transport system located in the cristae of the mitochondria; electrons from NADH and FADH2 are passed down a chain of carriers until O2 is reached and H2O is formed. ATP is formed during oxidative phosphorylation via chemiosmosis.
Fermentation involves glycolysis, followed by the reduction of pyruvate to lactate or alcohol and CO2; in humans, it provides a quick burst of energy but triggers oxygen debt.
Carbohydrate, protein, and fat can be used for energy, and their components can be used for synthesis of needed compounds; both anabolism and catabolism use the same metabolic pool of reactants.
Respirasi sel : pelepasan energi dari karbohidrat dan sintesis ATP
Perlu oksigen (O2)
Melepaskan karbondioksida (CO2)
glucose split to carbon dioxide and water.
Oksidasi glukosa (exergonic) akan mendorong sintesis ATP (endergonic), coupled reaction
Satu molekul glukosa menghasilkan 36 to 38 molekul ATP (efficiency of approx. 40%)
NAD+ and FAD
Nicotinamide adenine dinucleotide), flavin adenine dinucleotide
Coenzymes
NAD+ used more often
accept two electrons plus a hydrogen ion (H+) Reduced or oxidized?
The NAD+ cycle
Fase pemecahan molekul glukosa
Oksidasi glukosa dengan menghilangkan atom hidrogen melibatkan 4 fase
Glycolysis – pemecahan molekul glukosa menjadi 2 molekul asam piruvat dalam sitoplasma; no oxygen needed; yields 2 ATP
Transition reaction – piruvat dioksidasi menjadi gugus asetil dengan 2-carbon, dikatalisis oleh CoA (acetyl CoA); CO2 is removed; twice per glucose molecule
Citric acid cycle –reaksi oksidasi siklis yang melepaskan CO2 , menghasilkan satu molekul, NADH, FADH; berlangsung 2 kali per molekul glukosa
Electron transport system – a series of carriers that accept electrons removed from glucose and pass them from one carrier to the next until the final receptor, O2 is reached; water is produced; energy is released and used to synthesize 32 to 34 ATP
If oxygen is not available, fermentation occurs in the cytoplasm instead of proceeding to cellular respiration.
The four phases of complete glucose breakdown
Diluar mitokondria: Glycolysis
Glycolysis berlangsung di sitoplasma
dan merupakan reaksi pemecahan glukosa menjadi 2 molekul asam piruvat
Glycolysis is found in all organisms
Glycolysis does not require oxygen.
(Insert Fig. 7.4a)
Energy-Investment Steps
two ATP are used to activate glucose,
Glucose splits into two C3 molecules (PGAL).
PGAL carries a phosphate group from ATP.
From this point on, each C3 molecule undergoes the same series of reactions.
Glycolysis
Energy-Harvesting Steps
Oksidasi PGAL berlangsung dengan menghilangkan elektron dan diikuti dengan ion hidrogen, keduanya ditangkap oleh koenzim NAD+:
2 NAD+ + 4H → 2 NADH + 2 H+
The oxidation of PGAL and subsequent substrates results in four high-energy phosphate groups used to synthesize ATP in substrate-level phosphorylation.
Glycolysis summary
Inputs:
Glucose
2 NAD+
2 ATP
4 ADP + 2 P
Jika tersedia oksigen- pyruvate enters the mitochondria.
Jika tidak tersedia oxygen, fermentation occurs
Fermentation - anaeorbic (does not require oxygen), in humans lactic acid is produced.
Fermentation
Review
mitochondrion –
double membrane
intermembrane space between the two layers.
Cristae -folds of inner membrane that jut out into the matrix, the innermost compartment
transition reaction and citric acid cycle occur in the matrix
the electron transport system is located in the cristae.
Transition Reaction
1) connects glycolysis to the citric acid cycle
2) Pyruvate is converted to a C2 acetyl group attached to coenzyme A (together called acetyl CoA)
3) CO2 is released.
4) NAD+ is converted to NADH + H+
Citric Acid Cycle
1) Jalur metabolisme siklis yang berlangsung pada matriks mitokondria
2) acetylCoA joins a C4 molecule, and C6 citrate results.
AcetylCoA will be oxidized to CoA and 2 CO2 molecules.
4) oxidation occurs when NAD+ accepts electrons (happens 3 times) and FAD accepts electrons once.
Gain 1 ATP per acetyl CoA (substrate-level phosphorylation)
Citric acid cycle inputs and outputs per glucose molecule
Inputs:
2 acetyl groups
6 NAD+
2 FAD
2 ADP + 2 P
Electron Transport System
located in the cristae of mitochondria
series of protein carriers (some are cytochromes), pass electrons from one to the other.
3) electrons removed from NADH and FADH2 and enter the electron transport system.
pair of electrons is passed from carrier to carrier
energy is released and used to form ATP molecules by (oxidative phosphorylation)
6) Oxygen receives energy-spent electrons at the end of the electron transport system.
7) oxygen combines with hydrogen, and water forms:
Where did the hydrogen come from?
Organization of Cristae
electron transport system is located in the cristae
consists of protein complexes and mobile carriers.
The carriers use the energy released by electrons as they move down the carriers to pump H+ from the matrix into the intermembrane space of the mitochondrion.
pH gradient is established with few H+ in the matrix and many in the intermembrane space.
Is the pH of the matrix high or low?
Is the pH of the intermembrane space high or low?
cristae contain an ATP synthase complex through which hydrogen ions
Which way do they flow?
Energy used to synthesis ATP (chemiosmosis)
Accounting of energy yield per glucose molecule breakdown
Advantages and Disadvantages of Fermentation
Fermentation can provide a rapid burst of ATP in muscle cells, even when oxygen is in limited supply.
Lactate, however, is toxic to cells.
Initially, blood carries away lactate as it forms; eventually lactate builds up, lowering cell pH, and causing muscles to fatigue.
Oxygen debt occurs, and the liver must reconvert lactate to pyruvate.
Efficiency of Fermentation
Two ATP produced during fermentation are equivalent to 14.6 kcal; complete oxidation of glucose to CO2 and H2O represents a yield of 686 kcal per molecule of glucose.
Thus, fermentation is only 2.1% efficient compared to cellular respiration.
(14.6/686) x 100 = 2.1%
Metabolic Pool and Biosynthesis
Degradative reactions, which occur in catabolism, break down molecules and are exergonic.
Synthetic reactions, which occur during anabolism, tend to be endergonic.
Catabolism drives anabolism because catabolism results in ATP buildup used by anabolism.
Catabolism
Molecules aside from glucose can enter the catabolic reactions of cellular respiration.
When a fat is used for energy, it breaks down into glycerol and three fatty acids; glycerol is converted to PGAL, and the fatty acids are converted to acetyl-CoA, thus both types of molecules can enter the citric acid cycle.
The carbon backbones of amino acids can also enter the reactions of cellular respiration to provide energy.
The amino acid first undergoes deamination, or the removal of the amino group; the amino group becomes ammonia (NH3) and is excreted.
Where the carbon portion of the amino acid enters the reactions of respiration depends on its number of carbons.
Anabolism
The substrates of the pathways of cellular respiration can also be used as starting materials for synthetic reactions.
This is the cell’s metabolic pool, in which one type of molecule can be converted into another.
In this way, dietary carbohydrates can be converted to stored fat, and come substrates of the citric acid cycle can be transaminated into amino acids.
The metabolic pool concept
Chapter Summary
During cellular respiration, glucose is oxidized to CO2 and H2O; this exergonic reaction drives ATP buildup.
Four phases of cellular respiration occur:
1) Glycolysis, in the cytosol, is the breakdown of glucose to two pyruvates, with the formation of 2 NADH and net gain of 2 ATP.
2) A transition reaction takes place to convert pyruvate into acetyl-CoA, with CO2 given off; two NADH result in total.
3) The acetyl group enters the citric acid cycle, located in the matrix of the mitochondria; complete oxidation follows, and two CO2, three NADH, one FADH2, and two ATP are formed – the entire cycle runs twice per glucose molecule.
4) The final stage of glucose breakdown is the electron transport system located in the cristae of the mitochondria; electrons from NADH and FADH2 are passed down a chain of carriers until O2 is reached and H2O is formed. ATP is formed during oxidative phosphorylation via chemiosmosis.
Fermentation involves glycolysis, followed by the reduction of pyruvate to lactate or alcohol and CO2; in humans, it provides a quick burst of energy but triggers oxygen debt.
Carbohydrate, protein, and fat can be used for energy, and their components can be used for synthesis of needed compounds; both anabolism and catabolism use the same metabolic pool of reactants.
Molekul Penyusun Sel
Sel : unit terkecil (struktural & fungsional) penyusun mahluk hidup
Sel membentuk sejumlah molekul besar dari sekelompok molekul-molekul yang lebih kecil
Molekul organik yang kecil :
tersusun dari senyawa karbon (BM antara 100 – 1000) dan mengandung lebih dari 30 atom karbon
Beberapa digunakan sebagai monomer untuk menyusun makromolekul
Beberapa juga berfungsi sebagai sumber energi
Empat macam molekul organik kecil yang ada dalam sel
Cells make most of their large molecules
By joining smaller organic molecules into chains called polymers
Cells link monomers to form polymers
By a dehydration reaction (synthesis) or condensation
Polymers are broken down to monomers
By the reverse process, hydrolysis
CARBOHYDRATES
Monosaccharides are the simplest carbohydrates
The carbohydrate monomers Are monosaccharides
The monosaccharides glucose and fructose are isomers
That contain the same atoms but in different arrangements
Fungsi monosakarida
Sumber energi dalam proses respirasi
Rangka peyusun molekul-molekul yang lebih besar
Pati, glikogen, selulosa
Ribosa (gula pentosa) ; digunakan untuk membentuk RNA dan ATP
Deoksiribosa : digunakan untuk membentuk DNA
Didalam sel Monosakarida dapat bergabung membentuk
disakarida atau polisakarida
Contoh disakarida misalnya : sukrosa dan maltosa
How sweet is sweet?
Beberapa molekul, termasuk yang bukan gula
dapat terasa manis karena molekul tersebut terikat pada reseptor perasa “manis” yang ada di lidah.
Contoh polisakarida (merupakan cadangan energi):
Pati (pada sel tumbuhan)
Glikogen (pada sel hewan/manusia)
Cellulose is a polysaccharide found in plant cell walls
oligosakarida
Dapat membentuk ikatan kovalen dengan
Protein : glikoprotein
Lemak : glikolipid
Glikoprotein dan glikolipid merupakan komponen membran sel
Lipids are grouped together because they are hydrophobic
Asam lemak tersimpan didalam sitoplasma sel dalam bentuk molekul trigliserida (tiga rantai asam lemak yang bergabung dengan gliserol)
Lemak hewan : daging, butter, cream
Lemak tumbuhan : minyak jagung, minyak zaitun
Asam lemak (trigliserida)tidak larut dalam air (hidrofobik, non-polar) tetapi larut dalam pelarut organik
Misal : benzene, ethanol, chloroform, eter
Fats, also called triglycerides
Are lipids whose main function is energy storage
Consist of glycerol linked to three fatty acids
Phospholipids, waxes, and steroids are lipids with a variety of
functions
Phospholipids are a major component of cell membranes
Waxes form waterproof coatings
Steroids are often hormones
Saturated and unsaturated fats and fatty acids
Asam lemak tak jenuh (unsaturated) : memiliki ikatan ganda -C-C=C-C-C, mudah meleleh (minyak tumbuh-tumbuhan)
Jika terdapat lebih dari dua ikatan ganda : poliunsaturated
Asam lemak jenuh : umumnya berasal dari hewan
Saturated and unsaturated fats and fatty acids
Peran trigliserida : sebagai sumber energi
Lemak disimpan disejumlah tempat pada tubuh manusia : dibawah lapisan dermis pada kulit dan disekitar ginjal
CONNECTION
Anabolic steroids pose health risks
Anabolic steroids
Are synthetic variants of testosterone
Can cause serious health problems
PROTEINS
Each amino acid contains
An amino group
A carboxyl group
An R (variable) group, which distinguishes each of the 20 different amino acids
Each amino acid has specific properties
Based on its structure
Cells link amino acids together
By dehydration synthesis
The bonds between amino acid monomers
Are called peptide bonds
A protein’s specific shape determines its function
A protein consists of one or more polypeptide chains
Folded into a unique shape that determines the protein’s function
Primary Structure
A protein’s primary structure
Is the sequence of amino acids forming its polypeptide chains
Tertiary Structure
A protein’s tertiary structure
Is the overall three-dimensional shape of a polypeptide
Quaternary Structure
A protein’s quaternary structure
Results from the association of two or more polypeptide chains (subunits)
TALKING ABOUT SCIENCE
Linus Pauling contributed to our understanding of the
chemistry of life
Linus Pauling made important contributions
To our understanding of protein structure and function
NUCLEIC ACIDS
Nucleic acids are information-rich polymers of nucleotides
Nucleic acids such as DNA and RNA
Serve as the blueprints for proteins and thus control the life of a cell
The sugar and phosphate
Form the backbone for the nucleic acid or polynucleotide
DNA consists of two polynucleotides
Twisted around each other in a double helix
RNA, by contrast, is a single-stranded polynucleotideThree types of RNA
1 accatttgtt ggcagagaca gatggtcagt ctggaggatg acgtggcgtg aacatctgcc
61 tggagtcccg cccctgccca gaacccttcc tgagacctcg ccggccttgt tttattcaaa
121 gacagagaag accaaagcat tgcctgccag agctttgttt tatatattta ttcatctggg
181 aggcagaaca ggcttcggac agtgcccatg caatggcttg ggttgggatt ttggtttctt
241 cctttcctgt gaaggataag agaaacaggc ccggggggac caggatgaca cctccatttc
301 tctccaggaa gttttgagtt tctctccacc gtgacacaat cctcaaacat ggaagatgaa
361 agggcagggg atgtcaggcc cagagaagca agtggctttc aacacacaac agcagatggc
421 accaacggga ccccctggcc ctgcctcatc caccaatctc taagccaaac ccctaaactc
481 aggagtcaac gtgtttacct cttctatgca agccttgcta gacagccagg ttagcctttg
541 ccctgtcacc cccgaatcat gacccaccca gtgtctttcg aggtgggttt gtaccttcct
601 taagccagga aagggattca tggcgtcgga aatgatctgg ctgaatccgt ggtggcaccg
661 agaccaaact cattcaccaa atgatgccac ttcccagagg cagagcctga gtcaccggtc
721 acccttaata tttattaagt gcctgagaca cccggttacc ttggccgtga ggacacgtgg
781 cctgcaccca ggtgtggctg tcaggacacc agcctggtgc ccatcctccc gacccctacc
841 cacttccatt cccgtggtct ccttgcactt tctcagttca gagttgtaca ctgtgtacat
901 ttggcatttg tgttattatt ttgcactgtt ttctgtcgtg tgtgttggga tgggatccca
961 ggccagggaa agcccgtgtc aatgaatgcc ggggacagag aggggcaggt tgaccgggac
1021 ttcaaagccg tgatcgtgaa tatcgagaac tgccattgtc gtctttatgt ccgcccacct
1081 agtgcttcca cttctatgca aatgcctcca agccattcac ttccccaatc ttgtcgttga
1141 tgggtatgtg tttaaaacat gcacggtgag gccgggcgca gtggcctcac gcctgtaatc
Sel membentuk sejumlah molekul besar dari sekelompok molekul-molekul yang lebih kecil
Molekul organik yang kecil :
tersusun dari senyawa karbon (BM antara 100 – 1000) dan mengandung lebih dari 30 atom karbon
Beberapa digunakan sebagai monomer untuk menyusun makromolekul
Beberapa juga berfungsi sebagai sumber energi
Empat macam molekul organik kecil yang ada dalam sel
Cells make most of their large molecules
By joining smaller organic molecules into chains called polymers
Cells link monomers to form polymers
By a dehydration reaction (synthesis) or condensation
Polymers are broken down to monomers
By the reverse process, hydrolysis
CARBOHYDRATES
Monosaccharides are the simplest carbohydrates
The carbohydrate monomers Are monosaccharides
The monosaccharides glucose and fructose are isomers
That contain the same atoms but in different arrangements
Fungsi monosakarida
Sumber energi dalam proses respirasi
Rangka peyusun molekul-molekul yang lebih besar
Pati, glikogen, selulosa
Ribosa (gula pentosa) ; digunakan untuk membentuk RNA dan ATP
Deoksiribosa : digunakan untuk membentuk DNA
Didalam sel Monosakarida dapat bergabung membentuk
disakarida atau polisakarida
Contoh disakarida misalnya : sukrosa dan maltosa
How sweet is sweet?
Beberapa molekul, termasuk yang bukan gula
dapat terasa manis karena molekul tersebut terikat pada reseptor perasa “manis” yang ada di lidah.
Contoh polisakarida (merupakan cadangan energi):
Pati (pada sel tumbuhan)
Glikogen (pada sel hewan/manusia)
Cellulose is a polysaccharide found in plant cell walls
oligosakarida
Dapat membentuk ikatan kovalen dengan
Protein : glikoprotein
Lemak : glikolipid
Glikoprotein dan glikolipid merupakan komponen membran sel
Lipids are grouped together because they are hydrophobic
Asam lemak tersimpan didalam sitoplasma sel dalam bentuk molekul trigliserida (tiga rantai asam lemak yang bergabung dengan gliserol)
Lemak hewan : daging, butter, cream
Lemak tumbuhan : minyak jagung, minyak zaitun
Asam lemak (trigliserida)tidak larut dalam air (hidrofobik, non-polar) tetapi larut dalam pelarut organik
Misal : benzene, ethanol, chloroform, eter
Fats, also called triglycerides
Are lipids whose main function is energy storage
Consist of glycerol linked to three fatty acids
Phospholipids, waxes, and steroids are lipids with a variety of
functions
Phospholipids are a major component of cell membranes
Waxes form waterproof coatings
Steroids are often hormones
Saturated and unsaturated fats and fatty acids
Asam lemak tak jenuh (unsaturated) : memiliki ikatan ganda -C-C=C-C-C, mudah meleleh (minyak tumbuh-tumbuhan)
Jika terdapat lebih dari dua ikatan ganda : poliunsaturated
Asam lemak jenuh : umumnya berasal dari hewan
Saturated and unsaturated fats and fatty acids
Peran trigliserida : sebagai sumber energi
Lemak disimpan disejumlah tempat pada tubuh manusia : dibawah lapisan dermis pada kulit dan disekitar ginjal
CONNECTION
Anabolic steroids pose health risks
Anabolic steroids
Are synthetic variants of testosterone
Can cause serious health problems
PROTEINS
Each amino acid contains
An amino group
A carboxyl group
An R (variable) group, which distinguishes each of the 20 different amino acids
Each amino acid has specific properties
Based on its structure
Cells link amino acids together
By dehydration synthesis
The bonds between amino acid monomers
Are called peptide bonds
A protein’s specific shape determines its function
A protein consists of one or more polypeptide chains
Folded into a unique shape that determines the protein’s function
Primary Structure
A protein’s primary structure
Is the sequence of amino acids forming its polypeptide chains
Tertiary Structure
A protein’s tertiary structure
Is the overall three-dimensional shape of a polypeptide
Quaternary Structure
A protein’s quaternary structure
Results from the association of two or more polypeptide chains (subunits)
TALKING ABOUT SCIENCE
Linus Pauling contributed to our understanding of the
chemistry of life
Linus Pauling made important contributions
To our understanding of protein structure and function
NUCLEIC ACIDS
Nucleic acids are information-rich polymers of nucleotides
Nucleic acids such as DNA and RNA
Serve as the blueprints for proteins and thus control the life of a cell
The sugar and phosphate
Form the backbone for the nucleic acid or polynucleotide
DNA consists of two polynucleotides
Twisted around each other in a double helix
RNA, by contrast, is a single-stranded polynucleotideThree types of RNA
1 accatttgtt ggcagagaca gatggtcagt ctggaggatg acgtggcgtg aacatctgcc
61 tggagtcccg cccctgccca gaacccttcc tgagacctcg ccggccttgt tttattcaaa
121 gacagagaag accaaagcat tgcctgccag agctttgttt tatatattta ttcatctggg
181 aggcagaaca ggcttcggac agtgcccatg caatggcttg ggttgggatt ttggtttctt
241 cctttcctgt gaaggataag agaaacaggc ccggggggac caggatgaca cctccatttc
301 tctccaggaa gttttgagtt tctctccacc gtgacacaat cctcaaacat ggaagatgaa
361 agggcagggg atgtcaggcc cagagaagca agtggctttc aacacacaac agcagatggc
421 accaacggga ccccctggcc ctgcctcatc caccaatctc taagccaaac ccctaaactc
481 aggagtcaac gtgtttacct cttctatgca agccttgcta gacagccagg ttagcctttg
541 ccctgtcacc cccgaatcat gacccaccca gtgtctttcg aggtgggttt gtaccttcct
601 taagccagga aagggattca tggcgtcgga aatgatctgg ctgaatccgt ggtggcaccg
661 agaccaaact cattcaccaa atgatgccac ttcccagagg cagagcctga gtcaccggtc
721 acccttaata tttattaagt gcctgagaca cccggttacc ttggccgtga ggacacgtgg
781 cctgcaccca ggtgtggctg tcaggacacc agcctggtgc ccatcctccc gacccctacc
841 cacttccatt cccgtggtct ccttgcactt tctcagttca gagttgtaca ctgtgtacat
901 ttggcatttg tgttattatt ttgcactgtt ttctgtcgtg tgtgttggga tgggatccca
961 ggccagggaa agcccgtgtc aatgaatgcc ggggacagag aggggcaggt tgaccgggac
1021 ttcaaagccg tgatcgtgaa tatcgagaac tgccattgtc gtctttatgt ccgcccacct
1081 agtgcttcca cttctatgca aatgcctcca agccattcac ttccccaatc ttgtcgttga
1141 tgggtatgtg tttaaaacat gcacggtgag gccgggcgca gtggcctcac gcctgtaatc
Kuis 1
Molekul Penyusun Sel
1. Berikut ini merupakan molekul yang bersifat hidrofobik adalah
A. molekul polar dan hidrokarbon
B. Ion-ion dan hidrokarbon
C. Molekul non polar dan ion-ion
D. Molekul polar dan ion-ion
E. Bukan salah satu pernyataan diatas
2. Proses sintesis dimana senyawa monomer terikat secara kovalen disebut :
A. Hidrolisis
B. Isomerisasi
C. Kondensasi
D. Ikatan glikosidik
E. Ikatan ester
3. Manakah diatara senyawa berikut ini yang umumnya dianggap sebagai bentuk C inorganik?
A. CO2
B. C2H4
C. CH3COOH
D. C2H4 dan CH3COOH
E. Semua benar
4. Karbon umumnya merupakan rangka penyusun molekul organik karena
A. dapat membentu ikatan kovalen maupun ikatan ionik
B. ikatan kovalennya tersusun dalam sytuktur tiga dimensi yang tak teratur
C. Ikatan kovalennya merupakan ikatan yang terkuat
D. dapat terikat pada sejumlah besar atom dan elemen-elemen lain
E. Semua ikatan yang terbentuk bersifat polar
5. Struktur protein yang dapat dipengaruhi oleh ikatan hidrogen adalah
A. Struktur primer dan sekunder
B. Struktur primer dan tersier
C. Struktur sekunder, tersier dan kuartener
D. Struktur primer, sekunder dan tersier
E. Semua struktur protein
6. Asam lemak jenuh dikatakan demikian karena jenuh dengan
A. Hidrogen
B. Air
C. Gugus hidroksil
D. Gliserol
E. ikatan ganda
7. Asam lemak merupakan komponen dari
A. fosfolipid dan karotenoid
B. karotenoid dan triacylgliserol
C. Steroid dan triacylgliserol
D. Fosfolipid dan triacylgliserol
E. karotenoid dan steroid
8. Cadangan karbohidrat pada tanaman ada dalam bentuk……………, sedangkan pada hewan berupa senyawa…………..
9. Protein adalah molekul kompleks yang tersusun dari sub-unit sederhana yang disebut………….., dan terikat satu dengan yang lain dengan ikatan……………..
10. Nukleotida tersusun daria)…………………………..,b)…………………………dan c)…………………
Jawaban
1. E
2. C
3.
1. Berikut ini merupakan molekul yang bersifat hidrofobik adalah
A. molekul polar dan hidrokarbon
B. Ion-ion dan hidrokarbon
C. Molekul non polar dan ion-ion
D. Molekul polar dan ion-ion
E. Bukan salah satu pernyataan diatas
2. Proses sintesis dimana senyawa monomer terikat secara kovalen disebut :
A. Hidrolisis
B. Isomerisasi
C. Kondensasi
D. Ikatan glikosidik
E. Ikatan ester
3. Manakah diatara senyawa berikut ini yang umumnya dianggap sebagai bentuk C inorganik?
A. CO2
B. C2H4
C. CH3COOH
D. C2H4 dan CH3COOH
E. Semua benar
4. Karbon umumnya merupakan rangka penyusun molekul organik karena
A. dapat membentu ikatan kovalen maupun ikatan ionik
B. ikatan kovalennya tersusun dalam sytuktur tiga dimensi yang tak teratur
C. Ikatan kovalennya merupakan ikatan yang terkuat
D. dapat terikat pada sejumlah besar atom dan elemen-elemen lain
E. Semua ikatan yang terbentuk bersifat polar
5. Struktur protein yang dapat dipengaruhi oleh ikatan hidrogen adalah
A. Struktur primer dan sekunder
B. Struktur primer dan tersier
C. Struktur sekunder, tersier dan kuartener
D. Struktur primer, sekunder dan tersier
E. Semua struktur protein
6. Asam lemak jenuh dikatakan demikian karena jenuh dengan
A. Hidrogen
B. Air
C. Gugus hidroksil
D. Gliserol
E. ikatan ganda
7. Asam lemak merupakan komponen dari
A. fosfolipid dan karotenoid
B. karotenoid dan triacylgliserol
C. Steroid dan triacylgliserol
D. Fosfolipid dan triacylgliserol
E. karotenoid dan steroid
8. Cadangan karbohidrat pada tanaman ada dalam bentuk……………, sedangkan pada hewan berupa senyawa…………..
9. Protein adalah molekul kompleks yang tersusun dari sub-unit sederhana yang disebut………….., dan terikat satu dengan yang lain dengan ikatan……………..
10. Nukleotida tersusun daria)…………………………..,b)…………………………dan c)…………………
Jawaban
1. E
2. C
3.
The interaction of life: EcologyIntroduction to Ecology: Population Ecology
Learning Objectives:
Define ecology and distinguish among the following ecological levels: population, community, ecosystem, landscape, and biosphere.
Define population density and dispersion and describe the main type of population dispersion.
Explain the four factors (natality, mortality, immigration and emigration) that produce changes in population size and solves simple problems involving this changes.
Define intrinsic rate of increase and explain the J-shaped growth curves (exponential population growth).
Planet bumi
Biological organizations: hierarchical functional structure
Populasi
Komunitas
Ekosistem
Lanscape
Biome
Ekosfer (Biosfer)
Population Ecology
Population properties:
Population density
Population dispersion
Population size
Introduction
Ecology: the science that studies interactions among organisms (biotic factors) and between organisms and their non living physical environment (abiotic factors: water, temperature, pH, wing, chemical nutrient).
Abiotic factors: Earth scinece, geology, chemistry, oceanography, climatology, and meteorology
Mathematical models describe population growth:
On a global scale: 2 factors determine the population size:
natality: the rate at which individuals produce offspring (the average per capita birth rate) : e.g. number of birth per 1000 people per year).
mortality:the rate at which individuals die (the average per capita deah rate): e.g. number of death rate per 1000 people per year.
On a local population size determined by:
the average per capita birth rate (b)
the average per capita death rate (d)
the average per capita immigrant rate (i)
the average per capita emigrant rate (e)
The average growth rate:
N/t = N (b-d)
N: the changes in number of individuals in the population
t : the change in time
N : the number of individuals in the existing population
The growth rate (r) : the rate of change (increase or decrease) of a population on a per capita basis is the birth rate minus the death rate.
r = (b – d)
Global Population
Example: N = 10,000 people, 200 birth rate per year ( 20 birth per 1000 people) and 100 death per year (10 death per 1000 people).
r = 20/1000 – 10/1000
= 10/1000 = 0.001 (1% per year)
Local population:
r = (b– d ) + (i –e)
Example: A population of 10,000 that has 200 birth (20 per 1000), 100 death (10 per 1000), 10 immigrants (1 per 1000), and 100 emigrants (10 per 1000) in a given year.
r = ((0.02 – 0.010) + (0.001 – 0.010)
= 0.001 or 0.1% per year
Instantaneous growth rate:
N/t dN/dt
dN/dt = rN
solving for N: Nt = No. ert
Nt : number of individuals in at t time
No : number of individuals at the beginning ( t = 0)
r : instantaneous growth rate
e : base of natural logarithms ( 2.71828).
solving for r:
ln Nt – ln No
r = ----------------
t
Pertumbuhan Populasi
COMMUNITY ECOLOGY
Learning objectives:
Characterize a community and distinguish between a community and ecosystem.
Define ecological niche, distinguish between an organism’s fundamental niche and its realized niche. and give several examples of limiting resources that might affect an organism’s ecological niche.
Introduction
Community: ?
Community structure : ?
Community functioning
Community ecology:
Ecosystem
Community
Communities contain autotrophs and heterotrophs
Primary producers (autotrophs)
Consumers (heterotrophs)
Primary consumers (herbivores)
Secondary consumers (carnivores)
Tertiary consumers (carnivores)
Omnivores
Detritus feeders (detritivores)
Decomposers (saprotrophs)
Ecosystems and Biosphere
Learning Objectives:
Compare how matter and energy operate in ecosystems.
Summarize the concept of energy flow through a foodweb.
Draw and explain typical pyramids of numbers, biomass and energy.
Introduction
Ecosystems
Biosphere
Ecologists study:
energy flow,
cycling of nutrients,
effects of natural & human induced disturbances
EOLOGY AND THE GEOGRAPHY OF LIFE
Learning objectives:
Define biome and briefly describe the nine major terrestrial biomes, giving attention to the climate, soil and characteristic plants and animals of each.
Describe at least one human effect on each of the biomes discussed.
Introduction
Climate: temperature and precipitation many different
environments
Natural selection: organism’s to survive and reproduce
abiotic & biotic factors act to eliminate the least-fit
individuals in a given population better adapted
org.
Biomes are largely distinguished by their dominant form of vegetation.
biome: a large, relatively distinct terrestrial region
characterized by similar climate, soil, plants, and animals regardless of where it occurs.
a number of interacting ecosystems
temperature and precipitation: the most important factors ! (Fig. 54-1, p. 1206).
Near the poles: temperture is the most overriding climate factors.
Temperate & tropical regions: precipitation more significant than temperature (Fig. 54-2, p.1207).
Climate factors to which biomes are sensitive:
tempereture extreems
rapid temperature changes
floods
droughts
strong wind
fires
Charachteristics in terms of:
climate
soil
plants
animals
Nine major biomes:
Tundra
Taiga
Temperate rain forest
Temperate deciduous forest
Temperate grassland
Chapparal
Dessert
Savana
Tropical rain forest
Major Biomes
Tundra Map
Tundra
Tundra in Summer
Taiga map
Taiga
Taiga
Desert map
Desert
Desert
Dry Desert
Tropical Rain Forest
Tropical Rain Forest
Savana
Savana
Savana
Define ecology and distinguish among the following ecological levels: population, community, ecosystem, landscape, and biosphere.
Define population density and dispersion and describe the main type of population dispersion.
Explain the four factors (natality, mortality, immigration and emigration) that produce changes in population size and solves simple problems involving this changes.
Define intrinsic rate of increase and explain the J-shaped growth curves (exponential population growth).
Planet bumi
Biological organizations: hierarchical functional structure
Populasi
Komunitas
Ekosistem
Lanscape
Biome
Ekosfer (Biosfer)
Population Ecology
Population properties:
Population density
Population dispersion
Population size
Introduction
Ecology: the science that studies interactions among organisms (biotic factors) and between organisms and their non living physical environment (abiotic factors: water, temperature, pH, wing, chemical nutrient).
Abiotic factors: Earth scinece, geology, chemistry, oceanography, climatology, and meteorology
Mathematical models describe population growth:
On a global scale: 2 factors determine the population size:
natality: the rate at which individuals produce offspring (the average per capita birth rate) : e.g. number of birth per 1000 people per year).
mortality:the rate at which individuals die (the average per capita deah rate): e.g. number of death rate per 1000 people per year.
On a local population size determined by:
the average per capita birth rate (b)
the average per capita death rate (d)
the average per capita immigrant rate (i)
the average per capita emigrant rate (e)
The average growth rate:
N/t = N (b-d)
N: the changes in number of individuals in the population
t : the change in time
N : the number of individuals in the existing population
The growth rate (r) : the rate of change (increase or decrease) of a population on a per capita basis is the birth rate minus the death rate.
r = (b – d)
Global Population
Example: N = 10,000 people, 200 birth rate per year ( 20 birth per 1000 people) and 100 death per year (10 death per 1000 people).
r = 20/1000 – 10/1000
= 10/1000 = 0.001 (1% per year)
Local population:
r = (b– d ) + (i –e)
Example: A population of 10,000 that has 200 birth (20 per 1000), 100 death (10 per 1000), 10 immigrants (1 per 1000), and 100 emigrants (10 per 1000) in a given year.
r = ((0.02 – 0.010) + (0.001 – 0.010)
= 0.001 or 0.1% per year
Instantaneous growth rate:
N/t dN/dt
dN/dt = rN
solving for N: Nt = No. ert
Nt : number of individuals in at t time
No : number of individuals at the beginning ( t = 0)
r : instantaneous growth rate
e : base of natural logarithms ( 2.71828).
solving for r:
ln Nt – ln No
r = ----------------
t
Pertumbuhan Populasi
COMMUNITY ECOLOGY
Learning objectives:
Characterize a community and distinguish between a community and ecosystem.
Define ecological niche, distinguish between an organism’s fundamental niche and its realized niche. and give several examples of limiting resources that might affect an organism’s ecological niche.
Introduction
Community: ?
Community structure : ?
Community functioning
Community ecology:
Ecosystem
Community
Communities contain autotrophs and heterotrophs
Primary producers (autotrophs)
Consumers (heterotrophs)
Primary consumers (herbivores)
Secondary consumers (carnivores)
Tertiary consumers (carnivores)
Omnivores
Detritus feeders (detritivores)
Decomposers (saprotrophs)
Ecosystems and Biosphere
Learning Objectives:
Compare how matter and energy operate in ecosystems.
Summarize the concept of energy flow through a foodweb.
Draw and explain typical pyramids of numbers, biomass and energy.
Introduction
Ecosystems
Biosphere
Ecologists study:
energy flow,
cycling of nutrients,
effects of natural & human induced disturbances
EOLOGY AND THE GEOGRAPHY OF LIFE
Learning objectives:
Define biome and briefly describe the nine major terrestrial biomes, giving attention to the climate, soil and characteristic plants and animals of each.
Describe at least one human effect on each of the biomes discussed.
Introduction
Climate: temperature and precipitation many different
environments
Natural selection: organism’s to survive and reproduce
abiotic & biotic factors act to eliminate the least-fit
individuals in a given population better adapted
org.
Biomes are largely distinguished by their dominant form of vegetation.
biome: a large, relatively distinct terrestrial region
characterized by similar climate, soil, plants, and animals regardless of where it occurs.
a number of interacting ecosystems
temperature and precipitation: the most important factors ! (Fig. 54-1, p. 1206).
Near the poles: temperture is the most overriding climate factors.
Temperate & tropical regions: precipitation more significant than temperature (Fig. 54-2, p.1207).
Climate factors to which biomes are sensitive:
tempereture extreems
rapid temperature changes
floods
droughts
strong wind
fires
Charachteristics in terms of:
climate
soil
plants
animals
Nine major biomes:
Tundra
Taiga
Temperate rain forest
Temperate deciduous forest
Temperate grassland
Chapparal
Dessert
Savana
Tropical rain forest
Major Biomes
Tundra Map
Tundra
Tundra in Summer
Taiga map
Taiga
Taiga
Desert map
Desert
Desert
Dry Desert
Tropical Rain Forest
Tropical Rain Forest
Savana
Savana
Savana
Bioteknologi
Bioteknologi
Bioteknologi: Proses pemanfaatan sistim hayati untuk menghasilkan
barang atau jasa
Bioteknologi konvensional: industri pangan, obat-obatan,
pengolahan limbah, industri minuman
dengan menggunakan jasad yang
kodratnya tidak diubah.
Bioteknologi modern: pemanfaatan jasad yang sudah diubah
kodratnya melalui teknik rekayasa genetika,
misalnya penghasilan insulin manusia oleh
bakteri Escherichia coli, Tanaman kapas yang
tahan terhadap hama karena mengandung gen
toksin yang berasal dari bakteri (Bacillus
thuringiensis).
Bioteknologi Modern
Rekayasa genetika: pengubahan kodrat suatu jasad dengan mengubah sifat genetik melalui pemindahan gen dari satu jasad ke jasad lain.
Contoh: bakteri E. coli dapat menghasilkan insulin manusia karena telah memiliki gen yang mengkode insulin yang berasal dari manusia.
Manfaat Bioteknologi
Membuat terobosan dalam memecahkan masalah yang dihadapi dalam berbagai bidang, misalnya:
Kesehatan/obat-obatan
Pertanian/perkebunan/petenakan
Lingkungan
Industri pangan
pertambangan
Produksi Insulin oleh bakteri
Masalah:
Insulin diperlukan untuk penderita diabetes mellitus
Sumber insulin sulit diperoleh
Jumlah sedikit dan mahal
Sumber berupa hewan memerlukan jumlah yang banyak dan waktu lama
Rekayasa genetika
Gen yang mengkode insulin pada manusia di isolasi melalui teknik molecular cloning
Gen lalu dipindahkan ke dalam sel bakteri E. coli
Bakteri E. coli yang telah menerima gen insulin manusia disebut mikrobia yang telah direkayasa secara genetika (Genetically Engineered Microorganism = GEM)
E.coli yang tumbuh akan menghasilkan insulin
Keunggulan
Bakteri dapat tumbuh dalam tempat yang sempit (fermenter)
Kultivasi bakteri jauh lebih sederhana dari pada memelihara hewan
Tumbuh cepat ( 24 jam)
Dapat dihasilkan dalam jumlah yang besar
Hasilnya: dapat menolong penderita diabetes mellitus
Metode Rekayasa genetika
Isolasi dan pemurnian gen
Karakterisasi dan identifikasi gen
Penyambungan gen (ligasi) dengan vektor (plasmid) plasmid rekombinan
Memasukkan plasmid rekombinan ke dalam jasad penerima (transformasi)
Pemilihan sel penerima gen (seleksi rekombinan)
Penumbuhan sel rekombinan (ekspresi gen)
Teknik Rekayasa Genetika
gen cloning
↓
Ligasi
↓
Transformasi
↓
Seleksi transforman
↓
Kultivasi transforman
↓
Produksi insulin
Bioteknologi: Proses pemanfaatan sistim hayati untuk menghasilkan
barang atau jasa
Bioteknologi konvensional: industri pangan, obat-obatan,
pengolahan limbah, industri minuman
dengan menggunakan jasad yang
kodratnya tidak diubah.
Bioteknologi modern: pemanfaatan jasad yang sudah diubah
kodratnya melalui teknik rekayasa genetika,
misalnya penghasilan insulin manusia oleh
bakteri Escherichia coli, Tanaman kapas yang
tahan terhadap hama karena mengandung gen
toksin yang berasal dari bakteri (Bacillus
thuringiensis).
Bioteknologi Modern
Rekayasa genetika: pengubahan kodrat suatu jasad dengan mengubah sifat genetik melalui pemindahan gen dari satu jasad ke jasad lain.
Contoh: bakteri E. coli dapat menghasilkan insulin manusia karena telah memiliki gen yang mengkode insulin yang berasal dari manusia.
Manfaat Bioteknologi
Membuat terobosan dalam memecahkan masalah yang dihadapi dalam berbagai bidang, misalnya:
Kesehatan/obat-obatan
Pertanian/perkebunan/petenakan
Lingkungan
Industri pangan
pertambangan
Produksi Insulin oleh bakteri
Masalah:
Insulin diperlukan untuk penderita diabetes mellitus
Sumber insulin sulit diperoleh
Jumlah sedikit dan mahal
Sumber berupa hewan memerlukan jumlah yang banyak dan waktu lama
Rekayasa genetika
Gen yang mengkode insulin pada manusia di isolasi melalui teknik molecular cloning
Gen lalu dipindahkan ke dalam sel bakteri E. coli
Bakteri E. coli yang telah menerima gen insulin manusia disebut mikrobia yang telah direkayasa secara genetika (Genetically Engineered Microorganism = GEM)
E.coli yang tumbuh akan menghasilkan insulin
Keunggulan
Bakteri dapat tumbuh dalam tempat yang sempit (fermenter)
Kultivasi bakteri jauh lebih sederhana dari pada memelihara hewan
Tumbuh cepat ( 24 jam)
Dapat dihasilkan dalam jumlah yang besar
Hasilnya: dapat menolong penderita diabetes mellitus
Metode Rekayasa genetika
Isolasi dan pemurnian gen
Karakterisasi dan identifikasi gen
Penyambungan gen (ligasi) dengan vektor (plasmid) plasmid rekombinan
Memasukkan plasmid rekombinan ke dalam jasad penerima (transformasi)
Pemilihan sel penerima gen (seleksi rekombinan)
Penumbuhan sel rekombinan (ekspresi gen)
Teknik Rekayasa Genetika
gen cloning
↓
Ligasi
↓
Transformasi
↓
Seleksi transforman
↓
Kultivasi transforman
↓
Produksi insulin
Langganan:
Postingan (Atom)