Selasa, 24 Februari 2009

ILMU GIZI

MASALAH GIZI/NUTRISI DI INDONESIA
Avit. A
Anemia gizi besi
KKP
GAKY

POLA MAKAN DAN AKTIVITAS FISIK TDK SEIMBANG :
YOU ARE WHAT YOU EAT
AND
YOU ARE HOW MUCH YOU MOVE

BEBERAPA BATASAN
NUTRISI – nutrition – il. Gizi:
Mempelajari zat gizi dan makanan dan efeknya terhadap tubuh, dlm keadaan sehat maupun sakit
 Ilmu yg mempelajari tentang makanan yg dikaitkan dng kesehatan tubuh seseorang

NUTRIEN : zat gizi/unsur kimia dlm makanan (ada 6 kategori; kh, lemak, protein, vit, mineral, air) serat?

MAKANAN :
substansi yg dpt dimakan, t.d zat-zat gizi unt pemeliharaan tubuh

DIET : aturan makanan
makanan/minuman yg jmlnya diperhitungkan unt tujuan tertentu (tdk selalu unt menurunkan BB)

MALNUTRISI : nutrisi jelek, salah, bisa :
Under nutrition*
Over nutrition
Imbalance
Spesific deficiensy

FUNGSI MAKANAN
Penyediaan struktur komponen tubuh
Mempertahankan lingkungan internal yg konstan
Mengatur proses dl tubuh
Menyediakan energi ttp hidup dan berfungsi jenis mkn sempurna? tdk ada
Perlu kombinasi antara tb2an dan hewan
Gisi kosong?
Junk food?

KALORI UNTUK
Metabolisme basal
“Spesific dynamic Action” (SDA)
Pembuangan ekskreta
Aktivitas jasmani
Pertumbuhan
KALORI DIPEROLEH DARI
Protein, lemak, kh

1 gr  4 kal 9 kal 4 kal

Metabolisme basal :
Metab yg terjadi pd aktivitas yg paling rendah (basal)
Dlm keadaan tenang : - pisik - pikiran
Pakaian anak, ringan (baju tidur)

SDA
Kenaikan kalori yg diperlukan diatas keperluan metab basal  krn peristiwa makan dan pencernaan makanan
Diet protein berlebihan  SDA naik (metab perlu banyak energi
Bayi > anak

Pembuangan ekskreta
Pernafasan, urin, feses, keringat  perlu energi

Aktivitas jasmani
Aktivitas naik  perlu energi pertumbuhan anak naik (?) perlu tambahan energi?

KH : penyedia energi utama
Klasifikasi:
- monosakarid : glukose, fruktose, galaktose
disakarid : sukrose, maltose, laktose
polisakarid : “pati” / padi - padian
glikogen : ternak, ikan laut

Dlm bentuk glukose  utk semua sel, terutama untuk jar syaraf
Perhatian dlm bid KG  sukrose kariogenik
Tepung (KH) dlm mulut + amilase (saliva)
pecah
lambung
+amilase pankreas
intestinum

absorpsi  darah (glukose)

Kelebihan  simpan dl liver /otot sbg glikogen
Peny.yg berhub dgn kh
- karies - kegemukan
- gingivitis - DM


Dietary carbohydrate

Sucrose Starch
Invertase Lactose
Amylase
Glucose Maltose
GTF FTF Fructose

Glucan

Extracellular Various plaque Inrtacellular storage
Polysaccharides Fructan compounds
bacteria
Others
Other
Acids
plaque matrix Enamel Lactic
adherense dissolution Acid


Veillonella


DEFISIENSI : KELAPARAN

Memecah lemak

Asam lemak bebas

Asetil ko-A

Siklus krebs

ATP

Asam lemak bebas (jangka panjang

Esterifikasi tdk seimbang (pembentukan dan pemecahan lemak)

Asam lemak msk sirkulasi darah

Hepar ---subs. Pembentuk benda keton

Sirkulasi darah


LEMAK

Fungsi
Sumber energi
konsumsi : sosial ekonomi
negera maju  hewani
negara berkembang  nabati lemak tak tampak kacang2an
Memberi rasa pada makanan  gurih
Pelarut vit. A, D, E, K
Komponen membran sel, sel
Kehalusan kulit
Mengurangi kejadian karies  melapisi gigi dgn substansi berminyak  sisa makanan sukar menempel
 melapisi plak  fermentasi terhambat  menghalangi pertmb bakteri kariogenik



ASAM LEMAK ESENSIEL
Asam linoleat: - relatif terdapat banyak dlm makanan - penting utk pertumbuhan dan reproduksi - melindungi tubuh dr kehilangan air dan radiasi
Asam linolenat : anti agregasi platelet
Asam ara khidonat

Lemak makanan : mudah diserap ≠ terserap sekitar 5%  buang lewat feses (kalau ada gangguan penyerapan  feses berlemak)
Absorpsi: intestinum (perlu protein  chylomicrons) Kelebihan simpan dlm jar adipose (trigliserid)



DHA : docosahexanoic acid dalam susu formula bayi? Cerdas?
unsur as. lemak esensiel  as lenoleat dan as lenolenat (efeknya dlm susu formula belum jelas)
sulit diserap pd proses pencernaan bayi krn bukan merupakan ikatan rantai panjang
Pembuatan susu harus dg air panas merusakkan aktivitas ensim denaturase
Dlm ASI  unsur a lemak esensiel cukup DHA (ASI) : ikatan rantai panjang mudah diserap
Fungsi : - perkembangan sel otak - perkembangan retina - pencegahan kanker (?) - menurunkan trigliserid

protein

- juml terbesar setelah air - ½ berat badan kering tubuh - ⅓ dalam otot
- 1/5 dalam tulang
- 1/10 dalam kulit
Sebagai energi bila kh dan lemak tidak cukup, tapi tidak efisien

Dlm diet : utk asupan asam amino esensiel
Fungsi :
Pd umur muda : pertumb & perkemb jaringan
Pd umur tua/dewasa: pertahanan, mengganti bg yg rusak
Fungsi dinamik: katalis, transport, kontraksi otot
Fungsi struktural : komponen jaringan, tulang



Protein : dicerna-absorpi dlm bentuk asam amino (± 22 a.a) 8 macam a.a. esensiel - harus ada dlm makanan - ≠ dpt disintesis dl tubuh
lisin, triptophan, phenylalanin, leusin, isoleusin, threonin, methionin, valin
Pada anak : + histidin

Complete protein:
makanan / bhn makanan yg mengand 8 macam protein / a.a. esensiel  daging, susu, telor, ikan Telor  standar  diserap sempurna
 efek pertumbuhan lebih baik


“INCOMPLETE PROTEIN” : dari tumbuh-tumbuhan
Konsentrasi prot rendah  pertumb kurang
Perlu masukan yg lebih, kombinasi macam2 tumbuh2an/biji2an
Misal :
Jagung : lisin, triptophan rendah
Beras : lisin, threonin rendah
Kedelai : methyonin rendah
Hewani Nabati


AAA AAAAAA
KKKK A KKKKKK
UUUU N UUU NNNN
A K T E TTT HN
A H S SS



AKU ANAK SEHAT (4X) AKU ANAK SEHAT (2X)
Semua huruf  banyak sisa huruf yg
terpakai tdk dpt dipakai

Absorpsi : intestinum difusi sederhana
Darah  liver  transportasi sesuai kebutuhan
Asupan protein  konsentrasi urea pd plasma dan saliva naik  : ada hub antr komp plasma – urea saliva


Variasi warna kuning telur


kandungan pigmen karotenoid
dibuat : pada
Sayur

Tanaman
buah yang melakukan fotosintesis

bakteri
Mikroorganisme
jamur


Misal : ayam
makan
bahan makanan nabati yg mengandung karotenoid
lutein
telur : ada pigmen
zeazanthin
simpan, tdk ada perubh dlm kuning telur banyak sedikitnya tgt masukan

Telur  embrio  jaringan
kuning telur
Asam lemak tidak jenuh
Oksidasi  energi utk pertumbuhan
Utk perkembangan jar. otak, syaraf retina


Sbg membran fasfolipid sel
Sel-sel fotoreseptor retina



Pada proses tumbuh kembang:
Rentan terhd radikal bebas (mol. yg tdk punya pasangan elektron)
Rentan thd oksigen yg sangat reaktif (singlet oksigen)
Radikal bebas
- cari pasangan dr molekul disekitarnya
- berlebih  merusak membran sel dg peroksidasi lemak


merusak fungsi protein (asam amino, DNA  mutasi

kanker

Karotenoid
antioaksidan, mencegah peroksidasi lipid jaringan
Sistem kekebalan (antibodi)
Melindungi reseptor sel2 fagosit dr kerusakan krn radikal bebas
Proliferasi sel T, sel B bertambah ß karoten  prekursor (bahan asal) vi A suplemen vit A dlm btk ß karoten – bukan vit A aktif

dlm jumlah banyak
Tidak toksik toksik


Defisiensi  KKP (tidak berdiri sendiri)
Pada rongga mulut : manifestasi a.l.:  pertumbuhan rahang <

Posisi gigi
 erupsi gigi lambat
hipoplasi gigi

 jar. lunak : epitel saat ini




Susunan makanan sehari2 dikaitkan dg:
Kecukupan gizi
Susunan bahan makanan
Kandungan gizi

Daftar Komposisi Bahan Makanan
 daftar kandungan nutrien / 100 gr bhn
makanan

protein, energi, lemak, Ca, P, Fe,
vit A, B,C



Lingkar kehidupan manusia
Fetus  bayi  anak  remaja  dewasa  tua  meninggal
Kebutuhan zat gizi makro nutrien
dasar sama  5 macam mikro nutrien
Jumlah ≠ sama  umur, jenis kelamin  fase pertumbuhan  aktivitas
hiperplasia
Dlm proses tumb kemb hipertrofi kombinasi

Prenatal mitosis sel aktif
Postnatal  hiperplasi
Pertumb awal bayi  kombinasi
Masa anak akhir  hipertrofi

PENGARUH DIET  fase pertumb (pembtk sel)
(-) : kurangnya pertmb bersifat permanen meskipun sesudahnya ada perbaikan diet
(+) : misal : anak terlalu gemuk, sukar kurus  sel lemak terlanjur dibentuk terlalu banyak



Bayi : perlu nutrisi lebih besar
misal : kalori bayi : 40 -100 kal/kg/hari dewasa : 32-40 kal/kg/hari
Umur 5 bl : BB 2 x waktu lahir 12 bl : BB 3 X
Remaja : periode puncak pertumb (growth spurt) kebutuhan nutrisi besar (pada peremp : 10-11 th, lk-lk : 13-15 th)

Dewasa : nutrisi lebh untk pertumbuhan & perbaikan jar masa pertumb selesai

Makin tua:
aktivitas menurun  kalori yg dibutuhkan turun
kebuth jenis nutrien tetap
- perlu pemilihan/pengaturan makanan
kemampuan absorpsi makanan turun
sirkulasi menurun dan kurang baik
kesukaran makan yg berhub dg rongga mulut (gigi tdk lengkap)
problem pencernaan
kemampuan indera pengecap rasa menurun, selera makan turun
dll

VITAMIN DAN MINERAL

RETINOL  Vitamin A
Sumber: kuning telur, susu, keju, liver
KAROTEN  pro vitamin A
Sumber: wortel, tomat, apricot, ketela kuning

ADAPTASI TERHADAP CAHAYA
PERTUMBUHAN: TULANG
PEMELIHARAAN : SEL- SEL EPITEL


Fungsi biologik vitamin A:
- pertumbuhan dan perkembangan
tulang  precursor sel- sel osteoblas dan osteoklas
- diferensiasi dan pemeliharaan sel- sel epitel
- penglihatan
- reproduksi

VITAMIN D
absorpsi Ca
( - )  10- 15%
(+)  30%
TUMBANG, HAMIL  80%
Sumber:
- Makanan:
absorpsi (usus)  hati  ginjal AKTIF
D3 25 (OH)D3 1.25(OH)D3 D3

Pro Vitamin D3 pada kulit (7-dehidrokolesterol)  produk antara pada sintesis kolesterol, ergosterol

Pro Vitamin D3  sinar UV matahari (epidermis dan dermis)  pre vitamin D3 (tidak tahan panas)  Vitamin D3: hati  ginjal  vitamin D aktif

- Defisiensi: - tulang, gigi  struktur ( - )
- Kanker: mengatur pertumbuhan sel
menekan proliferasi sel
- Hipertensi: menekan angiotensin ( - )
TROPIS  Tetap perlu paparan sinar matahari secara langsung

VITAMIN C
Fungsi:
 biosintesis kolagen
pembelahan sel jaringan
pembentukan dan penguat elastisitas kapiler  jaringan tidak rapuh
fungsi leukosit menurun
Defisiensi:
Dalam rongga mulut “saat ini” manifestasinya a.l:  gingivitis


Mengenai marginal dan papila
Rasa sakit nyata
Perdarahan spontan
Diikuti defisiensi vitamin lain
Faktor lokal berperan

Sumber: buah- buahan jeruk, tomat
 pemberian suplemen

MINERAL:
- Macro calcium, phospor, magnesium
- Micro  trace elements: ferrum, copper, zink, iodine
Peran:
-kompleks  inter relasi dengan nutrien lain

Ca + P: pembentukan tulang dan gigi
Fe, Copp, Cobalt (pada vit B12):sintesis Hb, pembentuk eritrosit


Sodium, potassium, chlorine, phospor : mempertahankan cairan tubuh
Magnesium, calcium: fungsi sel” saraf

Defisiensi:
 calcium, iron, iodine: berhubungan dengan daerah tertentu


CALCIUM
99% : TULANG, GIGI
1% :jaringan lunak, cairan tubuh
 cadangan pada trabekula: ibu menyusui
 pada email dan dentin tidak memiliki cadangan
Sumber: keju, susu, kacang- kacangan, sayuran hijau

Level normal:
9-11mg/ 100 ml
60% dalam bentuk ion yang larut
40% terikat dengan protein
Fungsi:
Mengontol permeabilitas membran sel (berikatan dengan lechitin, berkompetisi dengan sodium dan potassium)

Mengatur irritabilitas otot dan saraf
 kadar Ca  irritabilitas
Mempertahankan “normal pulse rate “
Mempertahankan bagian kompleks protrombin dalam proses pembentukan darah
Aktivator enzim  lipase, alkalin fosfatase
Absorpsi vitamin B12


Absorpsi:
- 20- 30%
- lebih efisien bila simpanan di dalam tulang berkurang
- pada anak- anak terutama bila intake rendah lebih besar
Absorpsi dipengaruhi (lebih baik)
- pada suasana asam
- bila ada laktosa; asam- asam amino (lisin, arginin)
- vitamin D


Absorpsi terganggu:
- oxalat  Ca-oxalat (tidak larut)
- phytat
- lemak terlalu tinggi

Gangguan metabolisme Ca
- Lokal: rongga mulut
- Sistemik

Rickets: mineralisasi pada matriks kartilago sebelum pembentukan tulang  malformasi tulang
 intake tidak cukup
 defisiensi vitamin D
 defect pada metabolisme

Osteoporosis:
- Peningkatan porositas tulang
 umumnya pada usia tua
- Kehilangan massa tulang yang progresif (tidak ada perubahan volume dan bentuk tulang

PHOSPORUS
+/- 600 gram dalam tubuh
 10- 20% jaringan lunak
 80-90% tulang dan gigi
Sumber:
Terdistribusi luas dari tanaman hewan:
- kacang”an, daging, ikan, susu
- cereal yang dipolish: kadar <
- Tidak efektif dalam bentuk asam folat pada cereal dan kacang”an
- Kelebihan aluminium, kalsium, zat besi, magnesium terbentuk phospat, dan tidak dapat larut 
resorpsi terganggu

3 proses fisiologi tulang:
Pembentukan matriks:deposisi kolagen dan substansi dasar  jika proses tidak sempurna  osteoporosis (tidak ada hubungan dengan metabolisme phospor)
Deposisi kristal apatit pada matriks protein  jika proses tidak sempurna  osteomalasia, rickets
Destruksi tulang proses remodelling, bila berlebihan: osteitis fibroma cystic

Pada Rongga Mulut:
Jaringan lunak
Tulang dan gigi


FERRUM
Pada dewasa: 3-5 gr, terdistribusi:
Hemoglobin: pigmen sel darah merah 75% dari zat besi dalam tubuh
Mioglobin: protein- heme pada tulang dan muskulus (jantung)
- Struktur menyerupai hemoglobin
- Afinitas terhadap O2 >
- dapat menerima O2 yang dilepas Hb,
- bersifat sebagai cadangan O2

Katalase dan peroksidase
 enzim yang dapat membebaskan O2 peroksida (laktoperoksidase; dalam susu
Citokrome
 enzim dalam mitokondria
 untuk transfer elektron
Ferritin
 kompleks protein dan zat besi
 dalam sumsum tulang, liver dan limfa
Hemosiderin
 kompleks protein- zat besi
 pada jaringan normal: ferritin > hemosiderin
 intake berlebih: hemosiderin

Defisiensi:
Anemia mikrositer  [Hb]
bentuk anemia yang paling sering
intake (-); absorpsi (-)
kehamilan, menyusui, anak- anak
Defisiensi sedang  kelelahan kronis

Absorpsi:
bila ada asam askorbat
Kandungan pada liver, otot: absorpsi > baik daripada sayuran
Ca, P mengganggu absorpsi
Ca: mengurangi keasaman cairan
P: kelarutan rendah

Gambaran pada Rongga Mulut
Lidah: glossitis (atropi papila)
warna merah, mengkilap, halus
Plummer - Vinson disease
Penampakan mirip defisiensi niasin
Angular cheilitis (tidak khas)
Mukosa: pucat



Fe pada tikus:
250 ppm ferrichlorida (FeCl3) reduksi karies 50%
250 ppm ferricitrat  tidak ada penurunan karies
500 ppm ferricitrat  karies meningnkat 30%

Garam Fe:
berpengaruh pada peningkatan solubilitas email
Retensi gula dan karies pada permukaan halus

GIZI UNTUK PENYAKIT RESIKO TINGGI

lisdrianto hanindriyo

Content
Obesitas
Diabetes
Kardiovaskular
Kanker
Osteoporosis

Trend
Meningkatnya westernisasi, urbanisasi dan mekanisasi di hampir seluruh negara di seluruh dunia berpengaruh terhadap diet high-fat, high energy juga gaya hidup pasif
Seiring dengan meningkatnya obesity selama 30 tahun terakhir, prevalensi diabetes juga meningkat.
Di USA, 53% dari semua kematian wanita dengan BMI > 29 kg/m2 berhubungan dengan obesitas
Di negara berkembang obesity banyak terjadi pada wanita usia pertengahan
Indikator
Body Mass Index
Underweight  < 18,5
Normal  18,5 – 24,9
Overweight  25
Pre-obese  25 – 29,9
Obese class I  30,0 – 34,9
Obese class II  35,0 – 39,9
Obese class III  > 40,0
Lingkar Pinggang
Laki-laki : > 102 cm
Perempuan : > 88 cm

Faktor Etiologi
1. Protective
Lingkungan sekolah dan rumah
ASI eksklusif
2. Causative
Gaya hidup ‘pasif’
Pemasaran gencar makanan fast food/large portion, makanan rendah micronutrient, minuman soda  TV  target anak-anak dan remaja
Konsumsi tinggi minuman mengandung gula tiap gls/klng increase 60% prob of obesity
Faktor sosial ekonomi


Strategi Umum Pencegahan
1. Bayi dan anak :
Breast feeding
Menghindari penambahan gula pada makanan
Ibu  Menerima kemampuan makan anak
Menjamin kecupukan mikronutrien untuk pertumbuhan anak
2. Remaja :
Meningkatkan gaya hidup aktif
Membatasi menonton TV (pasif dan iklan)
Meningkatkan makan sayur dan buah serta makanan tinggi serat
Membatasi makanan mikronutrien rendah
Mengurangi konsumsi soft drink dan minuman tinggi gula lainnya


Diabetes
Ditekankan pada type 2 (NIDDM)
Komplikasi: kebutaan, gaal ginjal, gangren, meningkatkan resiko infeksi, CHD dan stroke
Saat ini ada sekitar 150 juta kasus dan mungkin menjadi 2X pada 2025
Dulu banyak terjadi pada umur tua sekarang pada semua usia

Pemberian diet bertujuan menyesuaikan makanan dengan kesanggupan tubuh agar pasien mencapai keadaan faali normal.
Syarat :
Jumlah kalori ditentukan menurut umur, jenis kelamin, BB dan TB, aktivitas, suhu tubuh, kelainan metabolik
Jumlah KH disesuaikan dengan kesanggupan tubuh
Gula murni dilarang
Makanan cukup protein, mineral dan vitamin
Pemberian makanan disesuaikan dengan obat yang dipakai


Macam Kal Prot Lmk KH
Diet g g g

I 1100 50 30 160
II 1300 55 35 195
III 1500 60 40 225
IV 1700 65 45 260
V 1900 70 50 300
VI 2100 80 55 325
VII 2300 85 65 350
VIII 2500 90 65 390

I –III pasien yang terlalu gemuk
IV-V pasien dengan BB normal
VI-VIII pasien kurus atau dengan komplikasi
Kardiovaskular
CVD menempati urutan tertinggi dari penyakit tdak menular.
Penyebab  pola makan tidak sehat, kurangnya aktivitas tubuh dan rokok.
 overweight, tekanan darah tinggi

Pengurang resiko  sayur dan buah, ikan dan minyak ikan (eicosappentaenoic acid dan docosahexaenoic acid), makanan tinggi linoleic acid dan potasium serta aktivitas fisik yang memadai.
 folate, vit. B6, flavonoid
Faktor resiko  myristic dan palmitic acid, trans fatty acid, intake sodium tinggi, alkohol dan overweight.
Rekomendasi
1. Lemak
Membatasi lemak dari daging dan susu, menghindari lemak hidrogenasi, menggunakan lemak tumbuhan sesuai takaran, konsumsi ikan atau sayur yang mengandung asam a-linoleic. Makanan lebih baik tidak digoreng.
2. Buah dan sayuran
Berguna karena kandungan phyto-nutrients, potasium dan serat. Jumlah yang dianjutkan 400-500 gram per hari.
3. Sodium
Penelitian : Dibatasi 70 mmol atau 1,7 gram per hari untuk menurunkan tekanan darah. Pencegahan  kurang dari 5 gram per hari termasuk produk sodium lain (misal MSG).
4. Potasium
Harian sekitar 70-80 mmol yang dapat diperoleh dari buah dan sayuran
5. Makanan berserat
Sumber : buah, sayur dan sereal
6. Ikan
Konsumsi ikan secara teratur paling tidak setara dengan 200-500 mg epa dan dha. Vegetarian  tanaman yang mengandung alpha linoleic acid.
8. Alkohol
Dilarang sama sekali
9. Aktivitas fisik
Paling tidak 30 menit sehari


KANKER
Faktor diet memiliki peran setelah rokok
Overweight  adenocarcinoma esophagus
- micronutrient, konsumsi makanan dan minuman terlalu panas  kanker rongga mulut, pharing dan esophagus
Ikan asin  kanker nasopharing
Rekomendasi
Jaga BB
Berolah raga secara teratur
Tidak mengkonsumsi alkohol
Mengurangi makanan yang diasinkan
Mengurangi makanan yang mengandung aflatoxin
Mengkonsumsi sayur dan buah minimal 400 g per hari
Mengurangi daging siap saji/olahan
Tidak mengkonsumsi makanan yang terlalu panas
Mengurangi bahan tambahan pada makanan
OSTEOPOROSIS
Sangat dipengaruhi oleh asupan makanan terutama Calcium dan vitamin D.
Untuk kesehatan tulang diperlukan juga Zinc, copper, manganese, boron, Vit A, Vit C, Vit K, Vit B, potasium dan sodium.
Rekomendasi
Kalsium intake 400-500 mg per hari
Peningkatan asupan vit D dan calcium pada usia tua dapat mengurangi resiko fraktur
Belum dipastikan tapi perlu diperhatikan :
Meningkatkan aktivitas tubuh, mengurangi konsumsi sodium, meningkatkan konsumsi buah dan sayuran, menjaga BB ideal, mtidak merokok dan minum alkohol.

ORAL HEALTH STATUS DAN NUTRISI

drg. Lisdrianto Hanindriyo, MPH
Content
Nutrisi – definisi
Kondisi oral dan manifestasi penyakit sistemik pada oral
Pengaruhnya terhadap intake nutrisi

Nutrisi/Gizi
Nutrisi :
zat-zat yang dimakan/dikonsumsi oleh manusia dan bagaimana tubuh memanfaatkan/menggunakannya prosesnya
Nutrien :
zat-zat yang didapatkan dari makanan dan dipergunakan oleh tubuh untuk proses pertumbuhan, pemeliharaan dan perbaikan
Ilmu gizi/nutrisi :
ilmu yang mempelajari nutrien dan bagaimana proses pengolahannya  pencernaan, absorbsi, transportasi, metabolisme, interaksi, penyimpanan dan ekskresinya

Nutrien
6 jenis nutrien:
Karbohidrat
Lemak
Protein
Vitamin
Mineral dan air
Intake Nutrisi (illustrated)


Kondisi oral dan manifestasi penyakit sistemik pada oral
Geriatri - Edentulous (rahang tak bergigi)
Diabetes – Xerostomia, periodontitis, luksasi gigi, halitosis, stomatitis
Kanker dan terapi kanker – xerostomia, fibrosis otot, hilang gigi, paraestesi pengecapan
HIV/AIDS – infeksi fungal, burning mouth
dll

Pengaruh Gigi Hilang Terhadap Intake Nutrisi
Hildebrandt et al. (1997)  berkurangnya jumlah gigi berhubungan dengan kecenderungan untuk menghindari makanan yang berserabut (daging/steak), renyah (wortel), dan makanan padat kering (roti).
Johansson et al. (1994)  laki-laki yang edentulous memakan lebih sedikit buah dan sayuran dan intake serat lebih rendah. Perempuan edentulous memakan lebih banyak lemak. Baik laki-laki dan perempuan edentulous mengkonsumsi lebih banyak makanan manis daripada mereka yang dentate.


Joshipura et al (1996)  edentulous mengkonsumsi lebih sedikit sayuran, kurang serat dan karoten, lebih banyak kolesterol, kalori dan lemak jenuh.
Sheiham et al (2001)  subyek yang memiliki gigi lebih banyak memiliki intake energi, protein, lemak, karbohodrat, serat, kalsium, zat besi, asam pantotenal dan vitamin C dan E lebih tinggi.
Krall et al (1998)  responden yang memakai gigi palsu yang sesuai memiliki intake lebih tinggi untuk serat, vitamin B6, asam folat, vitamin A,C dan D, karoten, thiamin, riboflavin magnesium, fosfor, dan zat besi.

Pengaruh Prothesa terhadap intake makanan
1. Krall et al (1998)  individu dengan full denture mengkonsumsi lebih sedikit kalori, thiamin, zat besi, folate, vitamin A dan karoten daripada yang masih memiliki gigi.

2. Papas et al (1998)  pasien dengan gigi palsu mengkonsumsi lebih banyak karbohidrat, gula dan kolesterol sedangkan konsumsi 19 macam vitamin dan protein menurun.

3. Laurin et al (1994) melaporkan bahwa individu yang memakai gigi palsu yang tidak baik (pengunyahan menjadi buruk) mengkonsumsi lebih sedikit buah dan sayuran.

Pengaruh gigi yang hilang terhadap status nutrisi
Blaum et al (1995)  ada hubungan antara kesulitan mengunyah dengan berkurangnya berat badan

Sheiham et al (2001)  subyek yang tidak memiliki gigi (edentate) memiliki rata-rata plasma level retinol, ascorbate dan tocopherol lebih rendah dari subyek yang masih memiliki gigi. Diantara subyek yang memiliki gigi, rata-rata tingkat plasma vitamin C secara positif berhubungan dengan peningkatan jumlah gigi yang beroklusi.

Elwood and Bates (1972)  orang tua tanpa gigi atau tidak memakai gigi palsu, tingkat hemoglobin, vitamin B12 dan folat lebih rendah.



Kondisi Medically Compromised
Diabetes Mellitus :
Diabetes yang tidak terkontrol menyebabkan meningkatnya resiko penyakit gilut  Penyakit periodontal, xerostomia, karies, dysgusia dan sindrom mulut terbakar.
Prosedur dental akan berhasil dalam kondisi diet terkontrol.

Kanker Oral
dan Pharyngeal

Terapi kanker seringkali menyebabkan komplikasi oral. Treatment radiasi pada area oropharyngeal menyebabkan hilangnya gigi, stomatitis yang sakit, xerostomia, fibrosis otot pengunyahan dan kehilangan indra pengecapan.
Treatment bedah menyebabkan berubahnya fungsi pengunyahan, kebutuhan energi dan nutrisi meningkat untuk penyembuhan, dan dapat berefek pada pengunyahan dan menelan secara permanen


Infeksi HIV


Pasien HIV memiliki resiko terkena oral disease seperti oral-pharyngeal fungal  mulut terasa terbakar dan sakit dan dysphagia  mengurangi nafsu makan
Sarcoma kaposi, kanker ganas oral pada HIV  di satu pihak pasien sulit makan, di pihak lain pasien membutuhkan peningkatan asupan nutrisi

Polypharmacy
Pengobatan dengan berbagai obat seperti pada penyakit HIV, kanker, penyakit autoimun dan kardiovaskuler  kemampuan orang untuk menelan, mencerna dan absorbsi makanan.
Efek obat antiretroviral, antiviral, antifungal, antiparasitic, antihipertensi, antidepresan, antihistamin, narkose, sedative dan antineoplastik diantaranya adalah xerostomia, stomatitis, berkurangnya aliran saliva, pengecapan berkurang dan ulser oral  berkurangnya intake makanan.
Pengaruh Penyakit Mulut thd Nutrisi
Prevalensi periodontitis meningkat seiring meningkatnya BMI dan kurang fitness.
Penderita xerostomia cenderung menghindari sayur renyah (wortel), makanan kering (roti), dan makanan lengket (selai kacang). Intake energi, protein, serat, vitamin A,C dan B6, thiamin, riboflavin, kalsium dan zat besi lebih rendah dari orang sehat. Penderita xerostomia umumnya memiliki BMI rendah.
Penderita dysgeusia intake vitamin A, vitamin C dan Calcium akan berkurang seiring dengan keparahannya.
Penyakit mulut  Gangguan pada intake nutrisi  defisiensi nutrisi  gangguan pada sistem tubuh

CHROMOSOME

Genetics: From Genes to Genomes (Second Edition)
Hartwell ● Hood ● Goldberg ● Reynolds ● Silver ● Veres
The Prokaryotic Chromosome
The bacterial genome is composed of one circular chromosome
4-5 Mb long
Condenses by supercoiling and looping into a densely packed nucleoid body
Chromosomes replicate inside cell and cell divides by binary fission

Chromosome
Each chromosome has a constriction point called the centromere, which divides the chromosome into two sections, or arms.
The short arm of the chromosome is labeled the p arm. The long arm of the chromosome is labeled the q arm.
Centromere structure and function
Characteristic shapes of chromosomes
Nilai Indeks Sentromer
Nilai Indeks Sentromer
Karyotype
A display of the paired homologues chromosomes from a cell

Allows determination of:
sex of an individual,
abnormal chromosome number,
other chromosome abnormalities,
etc.
A closer look at karyotypes: fully compacted metaphase chromosomes have unique, reproducible banding patterns
Banding patterns are highly reproducible

A closer look at karyotypes: fully compacted metaphase chromosomes have unique, reproducible banding patterns.
Banding patterns help locate genes
A closer look at karyotypes: fully compacted metaphase chromosomes have unique, reproducible banding patterns
Banding patterns can be used to analyze chromosomal differences between species
Can also be used to reveal cause of genetic disease
e.g., Downs syndrome – 3 copies of chromosome 21
Protein components of Chromosomes
Histone proteins abound the chromatin of all eukaryotic cells
Histones – small proteins with basic, positively charged amino acids lysine and arginine
Bind to and neutralize negatively charged DNA
Make up half of all chromatin protein by weight
Five types: H1, H2A, H2B, H3, and H4
Core histones make up nucleosome: H2A, H2B, H3, and H4
DNA and histone synthesis regulation correlate timing so both are synthesized together
High level of similarity of histones among diverse organisms
Protein components of Chromosome
Nonhistone proteins are a heterogeneous group
Half of proteins in chromatin are nonhistone
Large variety of nonhistone proteins – 200 – 2,000,000 in diploid genomes
Large variety of functions
Scaffold – backbone of chromosome
DNA replications – e.g., DNA polymerases
Chromosome segregation – e.g., motor proteins of kinetichores
Transcriptional regulation – largest group regulates transcription during gene expression
Occur in different amounts in different tissues because of variety of function
The nucleosome: The fundamental unit of chromosomal packaging arises from DNAs association with histones
Chromatin fibers with beads having diameter of about 100 A and strings having diameter of 20 A
The nucleosome: The fundamental unit of chromosomal packaging arises from DNAs association with histones
Bead is a nucleosome with about 160 bp of DNA wrapped twice around a core of 8 histones
40 bp of DNA link together nucleosomes
The nucleosome: the fundamental unit of chromosomal packaging arises from DNAs association with histones
X-ray diffraction analysis
DNA does not coil smoothly
Base sequences dictate preferred nucleosome positions along DNA
Spacing and structure affect genetic function
The nucleosome: The fundamental unit of chromosomal packaging arises from DNAs association with histones
Spacing of nucleosomes affects gene expression
Regions between nucleosomes available for interactions with proteins involved in expression, regulation, and further compaction
Determines how and whether certain proteins interact with specific sequences
Packaging into nucleosomes condenses DNA sevenfold
2 meters of DNA shortens to less than 0.25 meters
Models of higher level compaction seek to explain extreme compaction of chromosomes at mitosis
Radial loop-scaffold model for higher levels of compaction
Each loop contains 60-100 kb of DNA tethered (tertambat) by nonhistone scaffold proteins
Radial loop-scaffold model








The Chromosome Theory of Inheritance
Outline of Chromosome Theory of Inheritance
Observations and experiments that placed the hereditary material in the nucleus on the chromosomes
Mitosis ensures that every cell in an organism carries same set of chromosomes
Meiosis distributes one member of each chromosome pair to gamete cells
Gametogenesis, the process by which germ cells differentiate into gametes
Validation of the chromosome theory of inheritance
Evidence that Genes Reside in the Nucleus
1667 – Anton van Leeuwenhoek
Microscopist
Semen contains spermatozoa (sperm animals)
Hypothesized that sperm enter egg to achieve fertilization

1854-1874 – confirmation of fertilization through union of eggs and sperm
Recorded frog and sea urchin fertilization using microscopy and time-lapse drawings and micrographs
Evidence that Genes Reside in Chromosomes
1880s – innovations in microscopy and staining techniques identified thread-like structures
Provided a means to follow movement of chromosomes during cell division
Mitosis – two daughter cells contained same number of chromosomes as parent cell (somatic cells)
Meiosis – daughter cells contained half the number of chromosomes as the parents (sperm and eggs)
One Chromosome Pair Determines an Individual’s Sex
Walter Sutton – Studied great lubber grasshopper
Parent cells contained 22 chromosomes plus an X and a Y chromosome
Daughter cells contained 11 chromosomes and X or Y in equal numbers

Sex chromosome
Provide basis for sex determination
One sex has matching pair
Other sex has one of each type of chromosome

Sex determination in humans
Children receive only an X chromosome from mother but X or Y from father
At Fertilization, Haploid Gametes Produce Diploid Zygotes
Gamete contains one-half the number of chromosomes as the zygote
Haploid – cells that carry only a single chromosome set
Diploid – cells that carry two matching chromosome sets
n – the number of chromosomes in a haploid cell
2n – the number of chromosomes in a diploid cell

diploid vs haploid cell in
Drosophila
melanogaster
The number and shape of chromosomes vary from species to species
Anatomy of a chromosome
Homologous chromosomes match in size, shape, and banding patterns
Homologous chromosomes (homologs) contain the same set of genes
Genes may carry different alleles
Non-homologous chromosomes carry completely unrelated sets of genes


The cell cycle

Maintaining the Chromosome Number
Mitosis ensures that every cell in an organism carries the same chromosomes
Cell cycle – repeating pattern of cell growth and division
Alternates between interphase and mitosis
Interphase – period of cell cycle between divisions/cells grow and replicate chromosomes
G1 – gap phase – birth of cell to onset of chromosome replication/cell growth
S – synthesis phase – duplication of DNA
G2 – gap phase – end of chromosome replication to onset of mitosis
Chromosome replication during S phase of cell cycle
Interphase
Within nucleus
G1, S, and G2 phase – cell growth, protein synthesis, chromosome replication
Outside of nucleus
Formation of microtubules radiating out into cytoplasm crucial for interphase processes
Centrosome – organizing center for microtubules located near nuclear envelope
Centrioles – pair of small darkly stained bodies at center of centrosome in animals (not found in plants)
Mitosis – Sister chromatids separate
Prophase – chromosomes condense
Inside nucleus
Chromosomes condense into structures suitable for replication
Nucleoli begin to break down and disappear
Outside nucleus
Centrosomes which replicated during interphase move apart and migrate to opposite ends of the nucleus
Interphase microtubules disappear and are replaced by microtubules that rapidly grow from and contract back to centrosomal organizing centers
Mitosis - continued
Prometaphase
Nuclear envelope breaks down
Microtubules invade nucleus
Chromosomes attach to microtubules through kinetochore
Mitotic spindle – composed of three types of microtubules
Kinetochore microtubules – centrosome to kinetochore
Polar microtubules – centrosome to middle of cell
Astral microtubules – centrosome to cell’s periphery
Mitosis - continued
Metaphase – middle stage
Chromosomes move towards imaginary equator called metaphase plate
Mitosis - continued
Anaphase
Separation of sister chromatids allows each chromatid to be pulled towards spindle pole connected to by kinetochore microtubule
Mitosis – continued
Telophase
Spindle fibers disperse
Nuclear envelope forms around group of chromosomes at each pole
One or more nucleoli reappear
Chromosomes decondense
Mitosis complete
Mitosis - continued
Cytokinesis - cytoplasm divides
Starts during anaphase and ends in telophase
Animal cells – contractile ring pinches cells into two halves
Plant cells – cell plate forms dividing cell into two halves

The normal cell division
Cell Division in Prokaryotes
MEIOSIS
Meiosis produces haploid germ cells
Somatic cells – divide mitotically and make up vast majority of organism’s tissues
Germ cells – specialized role in the production of gametes
Arise during embryonic development in animals and floral development in plants
Undergo meiosis to produce haploid gametes
Gametes unite with gamete from opposite sex to produce diploid offspring
Meiosis: In The Beginning Two
Humans and many other complex multi-celled organisms incorporate genetic recombination in their reproduction
Reproduction in which there is a re-mixing of the genetic material is called sexual reproduction
Two cells, a sperm and an egg, unite to form a zygote, the single cell from which the organism develops
Meiosis is the process of producing sperm and eggs (gametes)
Gametes Are Haploid
Gametes must have half the genetic material of a normal cell
If the genetic material in the gametes was not halved, when they combined the zygote would have more genetic material than the parents
Meiosis is specialized cell division resulting in cells with half the genetic material of the parents
Gametes have exactly one set of chromosomes, this state is called haploid (1n)
Regular cells have two sets of chromosomes, this state is called diploid (2n)
Stages Of Meiosis
Meiosis resembles mitosis except that it is actually two divisions not one
These divisions are called Meiosis I and Meiosis II
Meiosis I results in haploid cells with chromosomes made up of two chromotids
Meiosis II is essentially mitosis on haploid cells
Stages of meiosis resemble mitosis with two critical differences: the first in prophase I and the second in Metaphase I
Stages Of Meiosis - Meiosis I
Prophase I - The beginning phase -
DNA which was unraveled and spread all over the nucleus is condensed and packaged
Homologous chromosomes (each made of two identical chromatids) come together and form tetrads (4 chromatids)
Crossing over, in which chromatids within tetrads exchange genetic material, occurs
Metaphase I - Middle stage - Tetrads line up along the equator of the cell
Stages Of Meiosis - Meiosis I
Anaphase I - One copy of each chromosome still composed of two chromatids moves to each pole of the cell
Telophase I - End stage - New nuclear membranes are formed around the chromosomes and cytokinesis (cytoplasm division) occurs resulting in two haploid daughter cells
Stages Of Meiosis - Meiosis II
Prophase II - Cells do not typically go into interphase between meiosis I and II, thus chromosomes are already condensed
Metaphase II - Chromosomes line up at the equator of the two haploid cells produced in meiosis I
Anaphase II - Chromosomes made up of two chromatids split to make chromosomes with one chromatid which migrate to the poles of the cells
Telophase II - Cytokinesis and reformation of the nuclear membrane in haploid cells each with one set of chromosomes made of one chromatid
Stages Of Meiosis: Meiosis I
Stages Of Meiosis: Meiosis II
Crossing Over

Gametogenesis involved mitosis and meiosis
Oogenesis – egg formation in humans
Diploid germ cells called oogonia multiply by mitosis to produce primary oocytes
Primary oocytes undergo meiosis I to produce one secondary oocyte and one small polar body (which arrests development)
Secondary oocyte undergoes meiosis II to produce one ovum and one small polar body
Polar bodies disintegrate (=hancur) leaving one large functional gamete
Oogenesis in humans
Gametogenesis
Spermatogenesis in humans
Symmetrical meiotic divisions produce four functional sperm
Begins in male testis in germ cells called spermatogonia
Mitosis produces diploid primary spermatocytes
Meiosis I produces two secondary spermatocytes per cell
Meiosis II produces four equivalent spermatids
Spematids mature into functional sperm
Spermatogenesis in humans
Meiosis Chromosomes replicate once Nuclei divide twice

Comparison of Meiosis with Mitosis

Comparison of Meiosis I with Mitosis
Meiosis I:
Prophase I - pairing of homologous chromosomes
Metaphase I – homologous pairs line up at metaphase plate
Anaphase I – homologous chromosomes separate
Telophase I – daughter cells are haploid
Mitosis:
Prophase has no such pairing
Metaphase – chromosomes align at metaphase plate
Anaphase – sister chromatids separate
Telophase – diploid cells
Comparison of Meiosis II with Mitosis




The chromosome theory correlates Mendel’s laws with chromosome behavior during meiosis
Chromosome Behavior
Each cell contains two copies of each chromosome
Chromosome complements appear unchanged during transmission from parent to offspring
Homologous chromosomes pair and then separate to different gametes
Maternal and paternal copies of chromosome pairs separate without regard to the assortment of other homologous chromosome pairs
At fertilization an egg’s set of chromosomes unite with randomly encountered sperm’s chromosomes
In all cells derived from a fertilized egg, one half of chromosomes are of maternal origin, and half are paternal

Cell growth and differentiation


Siklus sel
Stimulator : IAA, sitokinin, GA
nutrient (sukrosa)

Inhibitor : ABA

Why is cell division important?
Life cycle of a living organism: birth, growth and death…

Individual cells have a life cycle too!


25 million cell divisions occur in your body EVERY SECOND!!!
Diseases such as cancer: when cell division goes wild… (half million deaths/year!)
Pentingnya pembelahan sel
Meningkatkan kemampuan tumbuh jaringan / organ

Informasi yang menentukan diferensiasi terjadi pada siklus pembelahan sel

Arah pembelahan sel menentukan posisi dan fungsi sel hasil pembelahan
Pembelahan sel
Pembelahan sel: Proses dimana satu sel membelah menjadi dua.
Meliputi 2 bagian :
* pembelahan nucleus
Cell Cycle
Mulai dari saat pembelahan sel ke pembelahan sel berikutnya
Ada dua fase:
M phase : fase mitosis
Interphase : replikasi
kromosom
Most of the time (90%),
the cell is in interphase
(non-dividing stage)
Interphase
Interphase is the metabolically active stage.
Three phases:
G1 (gap 1)
S (synthesis)
G2 (gap 2)

Interphase stages
Persiapan pembelahan sel terjadi selama interphase (Interphase is not part of mitosis)

G1 phase: (First Gap) period of intense biological activity:
1. cell is actively growing,
2. organelles enlarge and divide,
3. protein synthesized,
4. respiration, etc.

S phase: (Synthesis) DNA is duplicated
Interphase stages
G2 phase: (Second Gap) Sintesis protein meningkat, persiapan pembelahan sel mencapai tahap akhir

Akhir G2 phase merupakan awal
pembelahan sel (mitosis)

Chromosomes?
CHROMO = Colored; SOMA = Bodies
Carry the genetic information (DNA): all the genes of an organism…
Genes: basic units of heredity, contain information for making one RNA and usually one protein
Approx. 30,000 genes/human or plant
Chromosomes
Condensed DNA and proteins (chromatin) coiled up together.
S phase: replikasi DNA
Pada saat S phase terjadi duplikasi DNA (dapat diukur dg aplikasi bahan radioaktif 32P atau 3H-thymidine)

DNA is replicated by the enzyme………………………….

MITOSIS
Mitosis is the process of nuclear division
Consists of four stages:
1. Prophase
2. Metaphase
3. Anaphase
4. Telophase

Phases of Mitosis:
1. Prophase
Chromatin (DNA + proteins) mulai mengalami kondensasi dan menebal, membentuk chromosomes.
membrane nukleus dan nucleolus menghilang.
Chromosomes bebas
didalam sitoplasma.
1. Prophase
Spindle starts to form
Spindle: a framework of microtubules that pulls the chromosomes from the center of the cells to the poles.
(microtubules – fibers that act like muscles)

2. Metaphase
Chromosomes line up on the cell’s equator
Each centromere is attached to a spindle fiber (microtubule)
Cell has two poles
At end of metaphase, centromeres divide

3. Anaphase
Sister chromatids are pulled to opposite ends of the cell – by contraction of the spindle fibers
Each chromatid is now considered one chromosome
Genetic material divided in 2 identical sets
4. Telophase
Nuclear membrane re-forms (2)
Chromatids unwind and lengthen: become indistinct (chromatin)
Two distinct nuclei are evident
Nucleolus reappears
Cell plate begins to appear
CYTOKINESIS
Cytoplasm division that separates two daughter nuclei into two cells
Cytokinesis begins in late anaphase, is completed by late telophase
Phragmoplast: vessicles, microtubules, and ER accumulates across center of dividing cell (Golgi)
Cell plate: forms in the middle of cell, becomes the cell wall separating two cells
Cytokinesis: Plants vs. animals
In animals, cell cleavage
In plants, cell plate forms, new cell wall
Kontrol siklus sel
Cyclin & cyclin-dependent kinase (CDKs)

Cyclin & cyclin-dependent kinase (CDKs)

Transisi G1 to S : tergantung pd bermacam gen
ekspresi gen tsb perlu faktor transkripsi E2F
Aktivitas E2P diatur oleh protein Rb
(retinoblastoma protein)
Pembelahan pada sel-sel yang telah dewasa : * natural * tanggapan terhadap stimulus lingkungan

Arah pembelahan sel
Is determined during late interphase

Microtubules di dalam sitoplasma
Become concentrated into a ring called the preprophase band

Arah dan simetri pembelahan sel penting dalam penentuan bentuk sel

If the planes of division of cells are parallel to the plane of the first division

A single file of cells will be produced

If the planes of division vary randomly
Asymmetrical cell division occurs
Mekanisme dan kontrol pembentangan sel
Meristem akar : 30 – 100 x lipat
Arah pembentangan berpengaruh pada bentuk organ dan arah pertumbuhan
Pada umumnya (tidak selalu) pembentangan sel terjadi setelah pembelahan sel
* pada umbi kentang : pembelahan dan pembentangan
terjadi bersamaan
Proses pembentangan sel :
* penyerapan air dan berbagai larutan yg lain
* vakuola bergabung membentuk central vacuole
* arah pembentangan dipengaruhi oleh orientasi
mikrofibril pada dinding sel

Hormon dan pemanjangan sel
Auksin
Konsentrasi optimum berbeda pada organ yang berbeda
Induksi plastisitas dinding sel

Giberelin

Loosening of cell wall

Senin, 23 Februari 2009

Asal usul kehidupan: Teori Evolusi

6.1. Evolusi kimiawi
6.2. Evolusi biologis
6.3. Teori evolusi Drwin
6.4. Teori evolusi modern
The origin & Evolutionary History of Life
How did life begin ?
Hipothesis: Chemical evolution
Early earth provide the conditions for chemical
evolution
Four conditions for chemical evolution:
The absence of oxygen
Energy to form organic molecules
Chemical building blocks: water, minerals, gases
Sufficient time for moleculesto accumulate






Harold Urey & Stanley Miller
Organic molecules formed on primitive earth
For steps are hypothesized in chemical evolution:
Small organic molecules formed spontaneously and
accumulated:
a. Prebiotic broth hypothesis
b. The iron-sulfur world hypothesis
2. Macromolecules assembleagedbfrom the samll organic molecules
3. Macromolecules assemblages called proptobionts
a. RNA world model
b. Natural selection at the molecular level
c. Directed evolution
4. Cells arouse from macromolecules assemblages


The first cells probably assembled from organic molecules
The first cells were prokaryotic heterotrophs (anaerobes)
Later autotrophs organism that produce their own molecules by photosynthetic arouse.
The evolution of photosynthesis: permited the evolution of aerobes
Eukaryotic cells arouse from prokaryotic cells: endosymbiont theory

The fossil record provide clues to the history of life
Earth history devided into 3 eras, each era devided into period which are devided into epoch
Precambrian time: 4.6 bya to 543 mya
Paleozoic era: microfossils: bacteria, protists, fungi and simple multicellular
Mesozoic era: non-flowering plansts, animals
Cenozoic era: modern order of mammals, birds



Evolutionary Tree of Life

EVOLUTION : Introduction to Darwinian Evolution

Learning objectives:
Discuss the historical development of the theory of evolution
Define evolution and explain the four premises of evolution by natural selection as proposed by Charles Darwin
Compare the synthetic theory of evolution with Darwin’s original theory of evolution

Summarize the evidence for evolution obtained from:
the fossil record,
comparative anatomy,
distribution of plants and animal (biogeography)
developmental biology,
molecular biology.
A. Introduction
biological diversity
evolution
population
species
microevolution (short term adaptation)
macroevolution (speciation)
B. Ideas about evolution originated before Darwin
Aristotle (384 – 322 B.C.) : natural affinities among organisms
Leonardo da Vinci (1452 – 1519): fossil, remain of extinct organisms
Jean Baptiste de Lamarck (1744 – 1829): Philosophie Zoologique
C. Darwin’s voyage was the basis for his theory of evolution
The H.M.S. Beagle voyage (1831)
Studying animals, plants` fossils and geological formations
Principles of Geology (Charles Lyell, 1830)
Artificial selection: colewort – cabbage, broccoli, Brussel’s sprout, cauliflower, collard greens, kale and kohlrabi.
Thomas Malthus (1798): population grow geometrically, but food supply grow arithmetically

D. Darwin proposed that evolution occurs by natural selection
The origin of species by means of Natural selection (1859)
Darwin’s mechanism of evolution by natural selection:
variation
overproduction
limits on population growth
differential of reproductive success
Natural Selection
Inherited variations favorable to survival tend to be preserved
BUT unfavorable variations tend to be eliminated
Adaptation: an evolutionary modification that improve survival & reproductive success in a given environment
Accumulation of modification might result new species

Natural selection
Alfred Russell Wallace (1823 –1913) had the same idea
Joint presentation of Darwin-Wallace at Linnean Society (London, 1858)
Contribution to the Natural Selection (Wallace, 1870)
E. The synthetic theory of evolution combines Darwin’s theory and genetics
At the population level: evolution ; the change of gene frequency
Evolution factors:
natural selection
mutation
gene flow (immigration or emmigrantion)
genetict drift
F. Many types of scientific evidences support evolution
The fossil record provides strong evidence of evolution
Comparative anatomy of related species demontrates similarities in their structure
The distribution of plants and animals supports evolution
Developmental biology is increasingly being used to explain evolution
Molecular comparisons among arganisms provides evidence for evolution
G. Bacteria and other organisms that cause infectious disese are evolving resistance to drug

Multiresistant-Drug TB : Mycobacterium tuberculosis
Antibiotic resistance : selection of resistant bacteria in the bacterial population
EVOLUTION AT POPULATION LEVEL
A. Learning objectives:
Define population, genetic equilibrium, and microevolution
Distinguish among genotype, phenotype and allele frequencies
Use the Hardy-Weinberg principle to solve problems involving populations
B. Calculation of :
genotype frequency
phenotype frequency
allele frequency:
The frequency of Homozygous dominant
The frequency of Heterozygous
The frequency of Homozygous recessive
C. Genetic equilibrium : the Hardy-Weinberg principle
p : the frequency of the dominant (A) allele in the population
q : the frequency of the recessive (a) allele in the population
p + q = 1 ( p = 1 – q; q – 1 = p)
(p + q)2 = (1)2
p2 + 2pq + q2 = 1
p2 : frequency of AA
2pq: frequency of Aa
q2: frequency of aa
1 : all the individuals in a population
D. Genetic equilibrium occurs if certain conditions are met:

Random mating
No net mutation
Large population size
No migration
No natural selection
Genotype Frequency: a population of 1000 individuals
Phenotype frequency
Allele frequency
Calculations
Individuals: diploid - has 2 alleles: thus 1000 individuals = 2000 alleles

490 AA individulals x 2 = 980 A
420 Aa individuals x 2 = 420 A + 420 a
90 aa individulas x 2 = 180 a
Total 1400 A + 600 a
Allele Frequency
Calculation of allele frequency & genotype frequency from the phenotype frequency
Always start Hardy-Weinberg calculation by determining the frequency of the homozygous recessive genotype (aa)
The frequency of aa genotype = 90/1000, thus the frequency of (q2) = 0.09
The frequency of a recessive allele (q) =√0.09
(q) = 0.3
Allele Frequency
p = 1 – q
p = 1 – 0.3
p = 0.7 (the frequency of dominant allele)
p2 = 0.7 x 0.7
p2 = 0.49 (the frequency of homozygous dominant individuals)
2pq =2(0.7 x 0.3)
= 0.42 (the frequency of heterozygous individuals)
Allele Frequency
Thus, q2 = 0.09 x 1000 = 90 individuals
p2 = 0.49 x 1000 = 490 individuals
2pq = 0.42 x 1000 = 420 individuals
This follow: p2 + 2pq + q2 = 1
(0.49) (0.42) (0.09)

Conclusion: the population is at genetic equilibrium !