Pengantar
Struktur organisasi mahluk hidup
Biomolekul penyusun sel
Reproduksi Sel
Metabolisme
Bahan Genetik
Pola hereditas: Genetika Mendel
Teori evolusi: Asal usul kehidupan
Prinsip Ekologi: interaksi mahluk hidup
Bioteknologi
1. Pengantar
Biologi sebagai ilmu yang mempelajari mahluk hidup
Objek kajian Biologi: mahluk hidup
Ciri-ciri mahluk hidup:
Struktur organisasi mahluk hidup
Keanekaragaman Mahluk Hidup:
Domain bakteria: 1.Dunia Bakteria
Domain Arkhaea: 2., Dunia Arkhaea
Domain Eukarya:
Dunia Protista (Protozoa, Algae, Slime molds)
Dunia Fungi (Khamir, Kapang dan Cendawan)
Dunia Plantae (Tumbuhan Lumut, Paku dan Tumbuhan berbiji)
Dunia Animalia (Avertebrata dan Vertebrata)
Bagaimana dengan Virus ??
Apakah virus mahluk hidup atau bukan ?
Jelaskan alasan anda !
Metode Ilmiah: cara mempelajari objek kajian biologi
Observasi
Perumusan masalah
Perumusan hipotesis
Pengjian hipotesis
Penarikan simpulan
2. Struktur Mahluk Hidup
Biologi Sel
Struktur tumbuhan
Struktur hewan
3. Reproduksi Sel
1. Reproduksi sel prokaryotic
(Pembelahan Biner)
2. Reproduksi sel eukaryotic (Mitosis)
3. Pembentukan gamet pada tumbuhan
dan hewan tingkat tinggi (Meiosis)
4. Biomolekul penyusun sel
Karbohidrat
Protein
Lipid
Asam nukleat
5. Metabolisme
1. Katabolisme: penghasilan energi
2. Anabolisme: biosistesis
3. Pemecahan glukosa: glikolisis
4. Siklus Krebs
5. Rantai respirasi
6. Fermentasi
7. Fotosintesis: reaksi cahaya & reaksi
gelap
6. Bahan genetik
1. Kromosom sebagai pembawa sifat
genetik
2. Gen dan alel
3. DNA dan RNA sebagai bahan genetik
4. Struktur dan fungsi DNA dan RNA
5. Ekspresi gen: transkripsi
6. Sisntesis protein: translasi
7. Kode genetik
7. Pola hereditas: Genetika Mendel
1. Prinsip hereditas: pemisahan alel
sebelum pembentukan gamet
2. Alel pada kromosom
3. Monohibrid: homozygote, heterozygote
4. Dihibrid
5. Kelainan genetic pada manusia
6. Mutasi: perubahan bahan genetik
8. Teori Evolusi : Asal usul kehidupan
1. Evolusi kimiawi
2. Evolusi biologis
3. Teori evolusi Drwin
4. Teori evolusi modern
9. Prinsip ekologi: interaksi mahluk hidup
1. Ekologi populasi
2. Ekologi Komunitas
3. Ekosistem dan biosfer
4. Ekologi dan biogeografi
5. Manusia dam lingkungan
10. Bioteknologi
1. Prinsip bioteknologi modern
2. Rekayasa genetika
3. Pemanfaatan mikrobia dalam bioteknologi
4. Kultur jaringan dan kultur sel
Referensi:
Solomon, E.P., Berg, L.R. & Martin, D.W. 2002.. Biology, Sixth Edition., Brooks/Cole. Thomson Learning, United States.
Senin, 23 Februari 2009
Introduction
I. What is biology ?
II. Definition of life:
III. Transmission of information: IV. Evolution: primary unifying concept
V. Hierarchi of biological organization
VI. Biological diversity
VII. Life requires energy supply
VIII. Biology as a science (Scientific method)
Introduction: Overview of biology
I. What is biology ?
II. Definition of life:
Cellular organization
Growth and development
Regulation of metabolic processes
Homeostasis
Reproduction
Heredity
III. Transmission of information:
1. DNA molecules
Genetic information
2.Chemical & electrical signal
Hormon
Nerve cells
IV. Evolution: primary unifying concept
Species adaptation
Natural selection
Selective pressure
V. Hierarchi of biological organization
1. Organismal level of organization
Atoms and molecules
Macromolecules (Biomolecules)
Subcelluar organells
Cells
Tissues
Organs
Organ system
Organisms
2.Ecological level of organization
Population
Community
Ecosystem
Biosphere
VI. Biological diversity
Naming organisms (binomial system)
Scientific names:
Bahasa Latin atau dilatinkan
Terdiri dari dua kata
Kata pertama: nama Genus
Kata ke-dua : penunjuk spesies
Contoh:
Homo sapiens
Oryza sativa
Columba livia
Mycobacterium tuberculosis
Rhyzopus oligosporus
Taxonomic hierarchical of classification
Domain
Kingdom
Phylum
Classis
Ordo
Familia
Genus
Species
Txonomic hierarchical of classification
Kingdoms of life:
Three domains: Six Kingdoms:
I. Archaea 1. Archaea
II. Bacteria 2. Bacteria
III.Eukarya 3. Protista
4. Fungi
5. Plantae
6. Animalia
VII. Life requires energy supply
1. Energy flows through organisms
Metabolism: catabolism & anabolism
2.Energy flows through ecosystem
Energy flows through food chains
Scientific Method
VIII. Biology as a science (Scientific method)
Scientific thinking process
Scientific observation and question
Hypothesis: possible explanation to account for observation
Scientific experiments: testing hypothesis
Results of experiments
Scientific theory: e.g. Evolutionary theory
Ethical dimensions of science
II. Definition of life:
III. Transmission of information: IV. Evolution: primary unifying concept
V. Hierarchi of biological organization
VI. Biological diversity
VII. Life requires energy supply
VIII. Biology as a science (Scientific method)
Introduction: Overview of biology
I. What is biology ?
II. Definition of life:
Cellular organization
Growth and development
Regulation of metabolic processes
Homeostasis
Reproduction
Heredity
III. Transmission of information:
1. DNA molecules
Genetic information
2.Chemical & electrical signal
Hormon
Nerve cells
IV. Evolution: primary unifying concept
Species adaptation
Natural selection
Selective pressure
V. Hierarchi of biological organization
1. Organismal level of organization
Atoms and molecules
Macromolecules (Biomolecules)
Subcelluar organells
Cells
Tissues
Organs
Organ system
Organisms
2.Ecological level of organization
Population
Community
Ecosystem
Biosphere
VI. Biological diversity
Naming organisms (binomial system)
Scientific names:
Bahasa Latin atau dilatinkan
Terdiri dari dua kata
Kata pertama: nama Genus
Kata ke-dua : penunjuk spesies
Contoh:
Homo sapiens
Oryza sativa
Columba livia
Mycobacterium tuberculosis
Rhyzopus oligosporus
Taxonomic hierarchical of classification
Domain
Kingdom
Phylum
Classis
Ordo
Familia
Genus
Species
Txonomic hierarchical of classification
Kingdoms of life:
Three domains: Six Kingdoms:
I. Archaea 1. Archaea
II. Bacteria 2. Bacteria
III.Eukarya 3. Protista
4. Fungi
5. Plantae
6. Animalia
VII. Life requires energy supply
1. Energy flows through organisms
Metabolism: catabolism & anabolism
2.Energy flows through ecosystem
Energy flows through food chains
Scientific Method
VIII. Biology as a science (Scientific method)
Scientific thinking process
Scientific observation and question
Hypothesis: possible explanation to account for observation
Scientific experiments: testing hypothesis
Results of experiments
Scientific theory: e.g. Evolutionary theory
Ethical dimensions of science
Metabolisme
Metabolisme: reaksi kimiawi terarah dalam sel yang dikatalisis oleh enzim
Katabolisme : disimilasi
Anabolisme: assimilasi-biosintesis
Fotosintesis
Katabolisme Glukosa
Respirasi Aerobik
Fermentasi
Respirasi Anaerobik
Respirasi Aerobik
Glikolisis
Siklus Krebs
Rantai Respirasi
Fermentasi
Fermentasi Alkohol (Etanol)
Fermentasi Asam Laktat
Respirasi Anaerobik
Penggunaan bahan teroksidasi sebagai akseptor elektron terakhir:
Nitrat Nitrit
Sulfat H2S
CO2 CH4
Anabolisme: Biosisntesis
Biosintesis Karbohidrat
Biosisntesis Protein
Biosintesis Asam Nukleat
Biosintesis Lipid
Fotosintesis
Reaksi Cahaya (Fotosistem II dan I)
Reaksi Gelap (Siklus Calvin-Benson)
Katabolisme : disimilasi
Anabolisme: assimilasi-biosintesis
Fotosintesis
Katabolisme Glukosa
Respirasi Aerobik
Fermentasi
Respirasi Anaerobik
Respirasi Aerobik
Glikolisis
Siklus Krebs
Rantai Respirasi
Fermentasi
Fermentasi Alkohol (Etanol)
Fermentasi Asam Laktat
Respirasi Anaerobik
Penggunaan bahan teroksidasi sebagai akseptor elektron terakhir:
Nitrat Nitrit
Sulfat H2S
CO2 CH4
Anabolisme: Biosisntesis
Biosintesis Karbohidrat
Biosisntesis Protein
Biosintesis Asam Nukleat
Biosintesis Lipid
Fotosintesis
Reaksi Cahaya (Fotosistem II dan I)
Reaksi Gelap (Siklus Calvin-Benson)
Tanaman obat & bakteri penyebab sakit gigi
Tea Fights Cavities, Reduces Plaque
ScienceDaily (May 24, 2001) — Drinking tea may help fight cavities. A group of researchers from the University of Illinois
Dr. Wu and her colleagues found that compounds in black tea were capable of killing or suppressing growth and acid production of cavity-causing bacteria in dental plaque. Black tea also affects the bacterial enzyme glucosyltranferase which is responsible for converting sugars into the sticky matrix material that plaque uses to adhere to teeth. In addition, certain plaque bacteria, upon exposure to black tea, lost their ability to form the clumpy aggregates with other bacteria in plaque, thereby reducing the total mass of the dental plaque.
Raisins Fight Oral BacteriaScienceDaily (June 8, 2005) — Compounds found in raisins fight bacteria in the mouth that cause cavities and gum disease, according to researchers at the University of Illinois at Chicago.
five phytochemicals in Thompson seedless raisins: oleanolic acid, oleanolic aldehyde, betulin, betulinic acid and 5-(hydroxymethyl)-2-furfural.
Oleanolic acid, oleanolic aldehyde, and 5-(hydroxymethyl)-2-furfural inhibited the growth of two species of oral bacteria: Streptococcus mutans, which causes cavities, and Porphyromonas gingivalis, which causes periodontal disease. The compounds were effective against the bacteria at concentrations ranging from about 200 to 1,000 micrograms per milliliter.
Betulin and betulinic acid were less effective, requiring much higher concentrations for similar antimicrobial activity.
At a concentration of 31 micrograms per milliliter, oleanolic acid also blocked S. mutans adherence to surfaces. Adherence is crucial for the bacteria to form dental plaque, the sticky biofilm that accumulates on teeth. After a sugary meal, these bacteria release acids that erode the tooth enamel.
Raisin (Kismis) contains mainly fructose and glucose, not sucrose, the main culprit in oral disease
Sweet Magnolia: Tree Bark Extract Fights Bad Breath And Tooth Decay
ScienceDaily (Nov. 20, 2007) — "Sweet magnolia" does more than describe the fragrant blossoms of a popular evergreen tree. It also applies to magnolia bark's effects on human breath. Scientists in Illinois are reporting that breath mints made with magnolia bark extract kill most oral bacteria that cause bad breath and tooth decay within 30 minutes. The extract could be a boon for oral health when added to chewing gum and mints.
New Bacterial Species Found In Human Mouth
ScienceDaily (Aug. 11, 2008)
Scientists have discovered a new species of bacteria in the mouth. The finding could help scientists to understand tooth decay and gum disease and may lead to better treatments, according to research published in the August issue of the International Journal of Systematic and Evolutionary Microbiology.
"The healthy human mouth is home to a tremendous variety of microbes including viruses, fungi, protozoa and bacteria," said Professor William Wade from King's College London Dental Institute. "The bacteria are the most numerous: there are 100 million in every millilitre of saliva and more than 600 different species in the mouth. Around half of these have yet to be named and we are trying to describe and name the new species."
Scientists studied healthy tissue as well as tumours in the mouth and found three strains of bacteria called Prevotella that could not be identified. Prevotella species are part of the normal microbial flora in humans and are also associated with various oral diseases and infections in other parts of the body. The researchers named the new species Prevotella histicola; histicola means 'inhabitant of tissue'.
ScienceDaily (May 24, 2001) — Drinking tea may help fight cavities. A group of researchers from the University of Illinois
Dr. Wu and her colleagues found that compounds in black tea were capable of killing or suppressing growth and acid production of cavity-causing bacteria in dental plaque. Black tea also affects the bacterial enzyme glucosyltranferase which is responsible for converting sugars into the sticky matrix material that plaque uses to adhere to teeth. In addition, certain plaque bacteria, upon exposure to black tea, lost their ability to form the clumpy aggregates with other bacteria in plaque, thereby reducing the total mass of the dental plaque.
Raisins Fight Oral BacteriaScienceDaily (June 8, 2005) — Compounds found in raisins fight bacteria in the mouth that cause cavities and gum disease, according to researchers at the University of Illinois at Chicago.
five phytochemicals in Thompson seedless raisins: oleanolic acid, oleanolic aldehyde, betulin, betulinic acid and 5-(hydroxymethyl)-2-furfural.
Oleanolic acid, oleanolic aldehyde, and 5-(hydroxymethyl)-2-furfural inhibited the growth of two species of oral bacteria: Streptococcus mutans, which causes cavities, and Porphyromonas gingivalis, which causes periodontal disease. The compounds were effective against the bacteria at concentrations ranging from about 200 to 1,000 micrograms per milliliter.
Betulin and betulinic acid were less effective, requiring much higher concentrations for similar antimicrobial activity.
At a concentration of 31 micrograms per milliliter, oleanolic acid also blocked S. mutans adherence to surfaces. Adherence is crucial for the bacteria to form dental plaque, the sticky biofilm that accumulates on teeth. After a sugary meal, these bacteria release acids that erode the tooth enamel.
Raisin (Kismis) contains mainly fructose and glucose, not sucrose, the main culprit in oral disease
Sweet Magnolia: Tree Bark Extract Fights Bad Breath And Tooth Decay
ScienceDaily (Nov. 20, 2007) — "Sweet magnolia" does more than describe the fragrant blossoms of a popular evergreen tree. It also applies to magnolia bark's effects on human breath. Scientists in Illinois are reporting that breath mints made with magnolia bark extract kill most oral bacteria that cause bad breath and tooth decay within 30 minutes. The extract could be a boon for oral health when added to chewing gum and mints.
New Bacterial Species Found In Human Mouth
ScienceDaily (Aug. 11, 2008)
Scientists have discovered a new species of bacteria in the mouth. The finding could help scientists to understand tooth decay and gum disease and may lead to better treatments, according to research published in the August issue of the International Journal of Systematic and Evolutionary Microbiology.
"The healthy human mouth is home to a tremendous variety of microbes including viruses, fungi, protozoa and bacteria," said Professor William Wade from King's College London Dental Institute. "The bacteria are the most numerous: there are 100 million in every millilitre of saliva and more than 600 different species in the mouth. Around half of these have yet to be named and we are trying to describe and name the new species."
Scientists studied healthy tissue as well as tumours in the mouth and found three strains of bacteria called Prevotella that could not be identified. Prevotella species are part of the normal microbial flora in humans and are also associated with various oral diseases and infections in other parts of the body. The researchers named the new species Prevotella histicola; histicola means 'inhabitant of tissue'.
Respirasi sel
Overview Respirasi sel
Respirasi sel : pelepasan energi dari karbohidrat dan sintesis ATP
Perlu oksigen (O2)
Melepaskan karbondioksida (CO2)
glucose split to carbon dioxide and water.
Oksidasi glukosa (exergonic) akan mendorong sintesis ATP (endergonic), coupled reaction
Satu molekul glukosa menghasilkan 36 to 38 molekul ATP (efficiency of approx. 40%)
NAD+ and FAD
Nicotinamide adenine dinucleotide), flavin adenine dinucleotide
Coenzymes
NAD+ used more often
accept two electrons plus a hydrogen ion (H+) Reduced or oxidized?
The NAD+ cycle
Fase pemecahan molekul glukosa
Oksidasi glukosa dengan menghilangkan atom hidrogen melibatkan 4 fase
Glycolysis – pemecahan molekul glukosa menjadi 2 molekul asam piruvat dalam sitoplasma; no oxygen needed; yields 2 ATP
Transition reaction – piruvat dioksidasi menjadi gugus asetil dengan 2-carbon, dikatalisis oleh CoA (acetyl CoA); CO2 is removed; twice per glucose molecule
Citric acid cycle –reaksi oksidasi siklis yang melepaskan CO2 , menghasilkan satu molekul, NADH, FADH; berlangsung 2 kali per molekul glukosa
Electron transport system – a series of carriers that accept electrons removed from glucose and pass them from one carrier to the next until the final receptor, O2 is reached; water is produced; energy is released and used to synthesize 32 to 34 ATP
If oxygen is not available, fermentation occurs in the cytoplasm instead of proceeding to cellular respiration.
The four phases of complete glucose breakdown
Diluar mitokondria: Glycolysis
Glycolysis berlangsung di sitoplasma
dan merupakan reaksi pemecahan glukosa menjadi 2 molekul asam piruvat
Glycolysis is found in all organisms
Glycolysis does not require oxygen.
(Insert Fig. 7.4a)
Energy-Investment Steps
two ATP are used to activate glucose,
Glucose splits into two C3 molecules (PGAL).
PGAL carries a phosphate group from ATP.
From this point on, each C3 molecule undergoes the same series of reactions.
Glycolysis
Energy-Harvesting Steps
Oksidasi PGAL berlangsung dengan menghilangkan elektron dan diikuti dengan ion hidrogen, keduanya ditangkap oleh koenzim NAD+:
2 NAD+ + 4H → 2 NADH + 2 H+
The oxidation of PGAL and subsequent substrates results in four high-energy phosphate groups used to synthesize ATP in substrate-level phosphorylation.
Glycolysis summary
Inputs:
Glucose
2 NAD+
2 ATP
4 ADP + 2 P
Jika tersedia oksigen- pyruvate enters the mitochondria.
Jika tidak tersedia oxygen, fermentation occurs
Fermentation - anaeorbic (does not require oxygen), in humans lactic acid is produced.
Fermentation
Review
mitochondrion –
double membrane
intermembrane space between the two layers.
Cristae -folds of inner membrane that jut out into the matrix, the innermost compartment
transition reaction and citric acid cycle occur in the matrix
the electron transport system is located in the cristae.
Transition Reaction
1) connects glycolysis to the citric acid cycle
2) Pyruvate is converted to a C2 acetyl group attached to coenzyme A (together called acetyl CoA)
3) CO2 is released.
4) NAD+ is converted to NADH + H+
Citric Acid Cycle
1) Jalur metabolisme siklis yang berlangsung pada matriks mitokondria
2) acetylCoA joins a C4 molecule, and C6 citrate results.
AcetylCoA will be oxidized to CoA and 2 CO2 molecules.
4) oxidation occurs when NAD+ accepts electrons (happens 3 times) and FAD accepts electrons once.
Gain 1 ATP per acetyl CoA (substrate-level phosphorylation)
Citric acid cycle inputs and outputs per glucose molecule
Inputs:
2 acetyl groups
6 NAD+
2 FAD
2 ADP + 2 P
Electron Transport System
located in the cristae of mitochondria
series of protein carriers (some are cytochromes), pass electrons from one to the other.
3) electrons removed from NADH and FADH2 and enter the electron transport system.
pair of electrons is passed from carrier to carrier
energy is released and used to form ATP molecules by (oxidative phosphorylation)
6) Oxygen receives energy-spent electrons at the end of the electron transport system.
7) oxygen combines with hydrogen, and water forms:
Where did the hydrogen come from?
Organization of Cristae
electron transport system is located in the cristae
consists of protein complexes and mobile carriers.
The carriers use the energy released by electrons as they move down the carriers to pump H+ from the matrix into the intermembrane space of the mitochondrion.
pH gradient is established with few H+ in the matrix and many in the intermembrane space.
Is the pH of the matrix high or low?
Is the pH of the intermembrane space high or low?
cristae contain an ATP synthase complex through which hydrogen ions
Which way do they flow?
Energy used to synthesis ATP (chemiosmosis)
Accounting of energy yield per glucose molecule breakdown
Advantages and Disadvantages of Fermentation
Fermentation can provide a rapid burst of ATP in muscle cells, even when oxygen is in limited supply.
Lactate, however, is toxic to cells.
Initially, blood carries away lactate as it forms; eventually lactate builds up, lowering cell pH, and causing muscles to fatigue.
Oxygen debt occurs, and the liver must reconvert lactate to pyruvate.
Efficiency of Fermentation
Two ATP produced during fermentation are equivalent to 14.6 kcal; complete oxidation of glucose to CO2 and H2O represents a yield of 686 kcal per molecule of glucose.
Thus, fermentation is only 2.1% efficient compared to cellular respiration.
(14.6/686) x 100 = 2.1%
Metabolic Pool and Biosynthesis
Degradative reactions, which occur in catabolism, break down molecules and are exergonic.
Synthetic reactions, which occur during anabolism, tend to be endergonic.
Catabolism drives anabolism because catabolism results in ATP buildup used by anabolism.
Catabolism
Molecules aside from glucose can enter the catabolic reactions of cellular respiration.
When a fat is used for energy, it breaks down into glycerol and three fatty acids; glycerol is converted to PGAL, and the fatty acids are converted to acetyl-CoA, thus both types of molecules can enter the citric acid cycle.
The carbon backbones of amino acids can also enter the reactions of cellular respiration to provide energy.
The amino acid first undergoes deamination, or the removal of the amino group; the amino group becomes ammonia (NH3) and is excreted.
Where the carbon portion of the amino acid enters the reactions of respiration depends on its number of carbons.
Anabolism
The substrates of the pathways of cellular respiration can also be used as starting materials for synthetic reactions.
This is the cell’s metabolic pool, in which one type of molecule can be converted into another.
In this way, dietary carbohydrates can be converted to stored fat, and come substrates of the citric acid cycle can be transaminated into amino acids.
The metabolic pool concept
Chapter Summary
During cellular respiration, glucose is oxidized to CO2 and H2O; this exergonic reaction drives ATP buildup.
Four phases of cellular respiration occur:
1) Glycolysis, in the cytosol, is the breakdown of glucose to two pyruvates, with the formation of 2 NADH and net gain of 2 ATP.
2) A transition reaction takes place to convert pyruvate into acetyl-CoA, with CO2 given off; two NADH result in total.
3) The acetyl group enters the citric acid cycle, located in the matrix of the mitochondria; complete oxidation follows, and two CO2, three NADH, one FADH2, and two ATP are formed – the entire cycle runs twice per glucose molecule.
4) The final stage of glucose breakdown is the electron transport system located in the cristae of the mitochondria; electrons from NADH and FADH2 are passed down a chain of carriers until O2 is reached and H2O is formed. ATP is formed during oxidative phosphorylation via chemiosmosis.
Fermentation involves glycolysis, followed by the reduction of pyruvate to lactate or alcohol and CO2; in humans, it provides a quick burst of energy but triggers oxygen debt.
Carbohydrate, protein, and fat can be used for energy, and their components can be used for synthesis of needed compounds; both anabolism and catabolism use the same metabolic pool of reactants.
Respirasi sel : pelepasan energi dari karbohidrat dan sintesis ATP
Perlu oksigen (O2)
Melepaskan karbondioksida (CO2)
glucose split to carbon dioxide and water.
Oksidasi glukosa (exergonic) akan mendorong sintesis ATP (endergonic), coupled reaction
Satu molekul glukosa menghasilkan 36 to 38 molekul ATP (efficiency of approx. 40%)
NAD+ and FAD
Nicotinamide adenine dinucleotide), flavin adenine dinucleotide
Coenzymes
NAD+ used more often
accept two electrons plus a hydrogen ion (H+) Reduced or oxidized?
The NAD+ cycle
Fase pemecahan molekul glukosa
Oksidasi glukosa dengan menghilangkan atom hidrogen melibatkan 4 fase
Glycolysis – pemecahan molekul glukosa menjadi 2 molekul asam piruvat dalam sitoplasma; no oxygen needed; yields 2 ATP
Transition reaction – piruvat dioksidasi menjadi gugus asetil dengan 2-carbon, dikatalisis oleh CoA (acetyl CoA); CO2 is removed; twice per glucose molecule
Citric acid cycle –reaksi oksidasi siklis yang melepaskan CO2 , menghasilkan satu molekul, NADH, FADH; berlangsung 2 kali per molekul glukosa
Electron transport system – a series of carriers that accept electrons removed from glucose and pass them from one carrier to the next until the final receptor, O2 is reached; water is produced; energy is released and used to synthesize 32 to 34 ATP
If oxygen is not available, fermentation occurs in the cytoplasm instead of proceeding to cellular respiration.
The four phases of complete glucose breakdown
Diluar mitokondria: Glycolysis
Glycolysis berlangsung di sitoplasma
dan merupakan reaksi pemecahan glukosa menjadi 2 molekul asam piruvat
Glycolysis is found in all organisms
Glycolysis does not require oxygen.
(Insert Fig. 7.4a)
Energy-Investment Steps
two ATP are used to activate glucose,
Glucose splits into two C3 molecules (PGAL).
PGAL carries a phosphate group from ATP.
From this point on, each C3 molecule undergoes the same series of reactions.
Glycolysis
Energy-Harvesting Steps
Oksidasi PGAL berlangsung dengan menghilangkan elektron dan diikuti dengan ion hidrogen, keduanya ditangkap oleh koenzim NAD+:
2 NAD+ + 4H → 2 NADH + 2 H+
The oxidation of PGAL and subsequent substrates results in four high-energy phosphate groups used to synthesize ATP in substrate-level phosphorylation.
Glycolysis summary
Inputs:
Glucose
2 NAD+
2 ATP
4 ADP + 2 P
Jika tersedia oksigen- pyruvate enters the mitochondria.
Jika tidak tersedia oxygen, fermentation occurs
Fermentation - anaeorbic (does not require oxygen), in humans lactic acid is produced.
Fermentation
Review
mitochondrion –
double membrane
intermembrane space between the two layers.
Cristae -folds of inner membrane that jut out into the matrix, the innermost compartment
transition reaction and citric acid cycle occur in the matrix
the electron transport system is located in the cristae.
Transition Reaction
1) connects glycolysis to the citric acid cycle
2) Pyruvate is converted to a C2 acetyl group attached to coenzyme A (together called acetyl CoA)
3) CO2 is released.
4) NAD+ is converted to NADH + H+
Citric Acid Cycle
1) Jalur metabolisme siklis yang berlangsung pada matriks mitokondria
2) acetylCoA joins a C4 molecule, and C6 citrate results.
AcetylCoA will be oxidized to CoA and 2 CO2 molecules.
4) oxidation occurs when NAD+ accepts electrons (happens 3 times) and FAD accepts electrons once.
Gain 1 ATP per acetyl CoA (substrate-level phosphorylation)
Citric acid cycle inputs and outputs per glucose molecule
Inputs:
2 acetyl groups
6 NAD+
2 FAD
2 ADP + 2 P
Electron Transport System
located in the cristae of mitochondria
series of protein carriers (some are cytochromes), pass electrons from one to the other.
3) electrons removed from NADH and FADH2 and enter the electron transport system.
pair of electrons is passed from carrier to carrier
energy is released and used to form ATP molecules by (oxidative phosphorylation)
6) Oxygen receives energy-spent electrons at the end of the electron transport system.
7) oxygen combines with hydrogen, and water forms:
Where did the hydrogen come from?
Organization of Cristae
electron transport system is located in the cristae
consists of protein complexes and mobile carriers.
The carriers use the energy released by electrons as they move down the carriers to pump H+ from the matrix into the intermembrane space of the mitochondrion.
pH gradient is established with few H+ in the matrix and many in the intermembrane space.
Is the pH of the matrix high or low?
Is the pH of the intermembrane space high or low?
cristae contain an ATP synthase complex through which hydrogen ions
Which way do they flow?
Energy used to synthesis ATP (chemiosmosis)
Accounting of energy yield per glucose molecule breakdown
Advantages and Disadvantages of Fermentation
Fermentation can provide a rapid burst of ATP in muscle cells, even when oxygen is in limited supply.
Lactate, however, is toxic to cells.
Initially, blood carries away lactate as it forms; eventually lactate builds up, lowering cell pH, and causing muscles to fatigue.
Oxygen debt occurs, and the liver must reconvert lactate to pyruvate.
Efficiency of Fermentation
Two ATP produced during fermentation are equivalent to 14.6 kcal; complete oxidation of glucose to CO2 and H2O represents a yield of 686 kcal per molecule of glucose.
Thus, fermentation is only 2.1% efficient compared to cellular respiration.
(14.6/686) x 100 = 2.1%
Metabolic Pool and Biosynthesis
Degradative reactions, which occur in catabolism, break down molecules and are exergonic.
Synthetic reactions, which occur during anabolism, tend to be endergonic.
Catabolism drives anabolism because catabolism results in ATP buildup used by anabolism.
Catabolism
Molecules aside from glucose can enter the catabolic reactions of cellular respiration.
When a fat is used for energy, it breaks down into glycerol and three fatty acids; glycerol is converted to PGAL, and the fatty acids are converted to acetyl-CoA, thus both types of molecules can enter the citric acid cycle.
The carbon backbones of amino acids can also enter the reactions of cellular respiration to provide energy.
The amino acid first undergoes deamination, or the removal of the amino group; the amino group becomes ammonia (NH3) and is excreted.
Where the carbon portion of the amino acid enters the reactions of respiration depends on its number of carbons.
Anabolism
The substrates of the pathways of cellular respiration can also be used as starting materials for synthetic reactions.
This is the cell’s metabolic pool, in which one type of molecule can be converted into another.
In this way, dietary carbohydrates can be converted to stored fat, and come substrates of the citric acid cycle can be transaminated into amino acids.
The metabolic pool concept
Chapter Summary
During cellular respiration, glucose is oxidized to CO2 and H2O; this exergonic reaction drives ATP buildup.
Four phases of cellular respiration occur:
1) Glycolysis, in the cytosol, is the breakdown of glucose to two pyruvates, with the formation of 2 NADH and net gain of 2 ATP.
2) A transition reaction takes place to convert pyruvate into acetyl-CoA, with CO2 given off; two NADH result in total.
3) The acetyl group enters the citric acid cycle, located in the matrix of the mitochondria; complete oxidation follows, and two CO2, three NADH, one FADH2, and two ATP are formed – the entire cycle runs twice per glucose molecule.
4) The final stage of glucose breakdown is the electron transport system located in the cristae of the mitochondria; electrons from NADH and FADH2 are passed down a chain of carriers until O2 is reached and H2O is formed. ATP is formed during oxidative phosphorylation via chemiosmosis.
Fermentation involves glycolysis, followed by the reduction of pyruvate to lactate or alcohol and CO2; in humans, it provides a quick burst of energy but triggers oxygen debt.
Carbohydrate, protein, and fat can be used for energy, and their components can be used for synthesis of needed compounds; both anabolism and catabolism use the same metabolic pool of reactants.
Molekul Penyusun Sel
Sel : unit terkecil (struktural & fungsional) penyusun mahluk hidup
Sel membentuk sejumlah molekul besar dari sekelompok molekul-molekul yang lebih kecil
Molekul organik yang kecil :
tersusun dari senyawa karbon (BM antara 100 – 1000) dan mengandung lebih dari 30 atom karbon
Beberapa digunakan sebagai monomer untuk menyusun makromolekul
Beberapa juga berfungsi sebagai sumber energi
Empat macam molekul organik kecil yang ada dalam sel
Cells make most of their large molecules
By joining smaller organic molecules into chains called polymers
Cells link monomers to form polymers
By a dehydration reaction (synthesis) or condensation
Polymers are broken down to monomers
By the reverse process, hydrolysis
CARBOHYDRATES
Monosaccharides are the simplest carbohydrates
The carbohydrate monomers Are monosaccharides
The monosaccharides glucose and fructose are isomers
That contain the same atoms but in different arrangements
Fungsi monosakarida
Sumber energi dalam proses respirasi
Rangka peyusun molekul-molekul yang lebih besar
Pati, glikogen, selulosa
Ribosa (gula pentosa) ; digunakan untuk membentuk RNA dan ATP
Deoksiribosa : digunakan untuk membentuk DNA
Didalam sel Monosakarida dapat bergabung membentuk
disakarida atau polisakarida
Contoh disakarida misalnya : sukrosa dan maltosa
How sweet is sweet?
Beberapa molekul, termasuk yang bukan gula
dapat terasa manis karena molekul tersebut terikat pada reseptor perasa “manis” yang ada di lidah.
Contoh polisakarida (merupakan cadangan energi):
Pati (pada sel tumbuhan)
Glikogen (pada sel hewan/manusia)
Cellulose is a polysaccharide found in plant cell walls
oligosakarida
Dapat membentuk ikatan kovalen dengan
Protein : glikoprotein
Lemak : glikolipid
Glikoprotein dan glikolipid merupakan komponen membran sel
Lipids are grouped together because they are hydrophobic
Asam lemak tersimpan didalam sitoplasma sel dalam bentuk molekul trigliserida (tiga rantai asam lemak yang bergabung dengan gliserol)
Lemak hewan : daging, butter, cream
Lemak tumbuhan : minyak jagung, minyak zaitun
Asam lemak (trigliserida)tidak larut dalam air (hidrofobik, non-polar) tetapi larut dalam pelarut organik
Misal : benzene, ethanol, chloroform, eter
Fats, also called triglycerides
Are lipids whose main function is energy storage
Consist of glycerol linked to three fatty acids
Phospholipids, waxes, and steroids are lipids with a variety of
functions
Phospholipids are a major component of cell membranes
Waxes form waterproof coatings
Steroids are often hormones
Saturated and unsaturated fats and fatty acids
Asam lemak tak jenuh (unsaturated) : memiliki ikatan ganda -C-C=C-C-C, mudah meleleh (minyak tumbuh-tumbuhan)
Jika terdapat lebih dari dua ikatan ganda : poliunsaturated
Asam lemak jenuh : umumnya berasal dari hewan
Saturated and unsaturated fats and fatty acids
Peran trigliserida : sebagai sumber energi
Lemak disimpan disejumlah tempat pada tubuh manusia : dibawah lapisan dermis pada kulit dan disekitar ginjal
CONNECTION
Anabolic steroids pose health risks
Anabolic steroids
Are synthetic variants of testosterone
Can cause serious health problems
PROTEINS
Each amino acid contains
An amino group
A carboxyl group
An R (variable) group, which distinguishes each of the 20 different amino acids
Each amino acid has specific properties
Based on its structure
Cells link amino acids together
By dehydration synthesis
The bonds between amino acid monomers
Are called peptide bonds
A protein’s specific shape determines its function
A protein consists of one or more polypeptide chains
Folded into a unique shape that determines the protein’s function
Primary Structure
A protein’s primary structure
Is the sequence of amino acids forming its polypeptide chains
Tertiary Structure
A protein’s tertiary structure
Is the overall three-dimensional shape of a polypeptide
Quaternary Structure
A protein’s quaternary structure
Results from the association of two or more polypeptide chains (subunits)
TALKING ABOUT SCIENCE
Linus Pauling contributed to our understanding of the
chemistry of life
Linus Pauling made important contributions
To our understanding of protein structure and function
NUCLEIC ACIDS
Nucleic acids are information-rich polymers of nucleotides
Nucleic acids such as DNA and RNA
Serve as the blueprints for proteins and thus control the life of a cell
The sugar and phosphate
Form the backbone for the nucleic acid or polynucleotide
DNA consists of two polynucleotides
Twisted around each other in a double helix
RNA, by contrast, is a single-stranded polynucleotideThree types of RNA
1 accatttgtt ggcagagaca gatggtcagt ctggaggatg acgtggcgtg aacatctgcc
61 tggagtcccg cccctgccca gaacccttcc tgagacctcg ccggccttgt tttattcaaa
121 gacagagaag accaaagcat tgcctgccag agctttgttt tatatattta ttcatctggg
181 aggcagaaca ggcttcggac agtgcccatg caatggcttg ggttgggatt ttggtttctt
241 cctttcctgt gaaggataag agaaacaggc ccggggggac caggatgaca cctccatttc
301 tctccaggaa gttttgagtt tctctccacc gtgacacaat cctcaaacat ggaagatgaa
361 agggcagggg atgtcaggcc cagagaagca agtggctttc aacacacaac agcagatggc
421 accaacggga ccccctggcc ctgcctcatc caccaatctc taagccaaac ccctaaactc
481 aggagtcaac gtgtttacct cttctatgca agccttgcta gacagccagg ttagcctttg
541 ccctgtcacc cccgaatcat gacccaccca gtgtctttcg aggtgggttt gtaccttcct
601 taagccagga aagggattca tggcgtcgga aatgatctgg ctgaatccgt ggtggcaccg
661 agaccaaact cattcaccaa atgatgccac ttcccagagg cagagcctga gtcaccggtc
721 acccttaata tttattaagt gcctgagaca cccggttacc ttggccgtga ggacacgtgg
781 cctgcaccca ggtgtggctg tcaggacacc agcctggtgc ccatcctccc gacccctacc
841 cacttccatt cccgtggtct ccttgcactt tctcagttca gagttgtaca ctgtgtacat
901 ttggcatttg tgttattatt ttgcactgtt ttctgtcgtg tgtgttggga tgggatccca
961 ggccagggaa agcccgtgtc aatgaatgcc ggggacagag aggggcaggt tgaccgggac
1021 ttcaaagccg tgatcgtgaa tatcgagaac tgccattgtc gtctttatgt ccgcccacct
1081 agtgcttcca cttctatgca aatgcctcca agccattcac ttccccaatc ttgtcgttga
1141 tgggtatgtg tttaaaacat gcacggtgag gccgggcgca gtggcctcac gcctgtaatc
Sel membentuk sejumlah molekul besar dari sekelompok molekul-molekul yang lebih kecil
Molekul organik yang kecil :
tersusun dari senyawa karbon (BM antara 100 – 1000) dan mengandung lebih dari 30 atom karbon
Beberapa digunakan sebagai monomer untuk menyusun makromolekul
Beberapa juga berfungsi sebagai sumber energi
Empat macam molekul organik kecil yang ada dalam sel
Cells make most of their large molecules
By joining smaller organic molecules into chains called polymers
Cells link monomers to form polymers
By a dehydration reaction (synthesis) or condensation
Polymers are broken down to monomers
By the reverse process, hydrolysis
CARBOHYDRATES
Monosaccharides are the simplest carbohydrates
The carbohydrate monomers Are monosaccharides
The monosaccharides glucose and fructose are isomers
That contain the same atoms but in different arrangements
Fungsi monosakarida
Sumber energi dalam proses respirasi
Rangka peyusun molekul-molekul yang lebih besar
Pati, glikogen, selulosa
Ribosa (gula pentosa) ; digunakan untuk membentuk RNA dan ATP
Deoksiribosa : digunakan untuk membentuk DNA
Didalam sel Monosakarida dapat bergabung membentuk
disakarida atau polisakarida
Contoh disakarida misalnya : sukrosa dan maltosa
How sweet is sweet?
Beberapa molekul, termasuk yang bukan gula
dapat terasa manis karena molekul tersebut terikat pada reseptor perasa “manis” yang ada di lidah.
Contoh polisakarida (merupakan cadangan energi):
Pati (pada sel tumbuhan)
Glikogen (pada sel hewan/manusia)
Cellulose is a polysaccharide found in plant cell walls
oligosakarida
Dapat membentuk ikatan kovalen dengan
Protein : glikoprotein
Lemak : glikolipid
Glikoprotein dan glikolipid merupakan komponen membran sel
Lipids are grouped together because they are hydrophobic
Asam lemak tersimpan didalam sitoplasma sel dalam bentuk molekul trigliserida (tiga rantai asam lemak yang bergabung dengan gliserol)
Lemak hewan : daging, butter, cream
Lemak tumbuhan : minyak jagung, minyak zaitun
Asam lemak (trigliserida)tidak larut dalam air (hidrofobik, non-polar) tetapi larut dalam pelarut organik
Misal : benzene, ethanol, chloroform, eter
Fats, also called triglycerides
Are lipids whose main function is energy storage
Consist of glycerol linked to three fatty acids
Phospholipids, waxes, and steroids are lipids with a variety of
functions
Phospholipids are a major component of cell membranes
Waxes form waterproof coatings
Steroids are often hormones
Saturated and unsaturated fats and fatty acids
Asam lemak tak jenuh (unsaturated) : memiliki ikatan ganda -C-C=C-C-C, mudah meleleh (minyak tumbuh-tumbuhan)
Jika terdapat lebih dari dua ikatan ganda : poliunsaturated
Asam lemak jenuh : umumnya berasal dari hewan
Saturated and unsaturated fats and fatty acids
Peran trigliserida : sebagai sumber energi
Lemak disimpan disejumlah tempat pada tubuh manusia : dibawah lapisan dermis pada kulit dan disekitar ginjal
CONNECTION
Anabolic steroids pose health risks
Anabolic steroids
Are synthetic variants of testosterone
Can cause serious health problems
PROTEINS
Each amino acid contains
An amino group
A carboxyl group
An R (variable) group, which distinguishes each of the 20 different amino acids
Each amino acid has specific properties
Based on its structure
Cells link amino acids together
By dehydration synthesis
The bonds between amino acid monomers
Are called peptide bonds
A protein’s specific shape determines its function
A protein consists of one or more polypeptide chains
Folded into a unique shape that determines the protein’s function
Primary Structure
A protein’s primary structure
Is the sequence of amino acids forming its polypeptide chains
Tertiary Structure
A protein’s tertiary structure
Is the overall three-dimensional shape of a polypeptide
Quaternary Structure
A protein’s quaternary structure
Results from the association of two or more polypeptide chains (subunits)
TALKING ABOUT SCIENCE
Linus Pauling contributed to our understanding of the
chemistry of life
Linus Pauling made important contributions
To our understanding of protein structure and function
NUCLEIC ACIDS
Nucleic acids are information-rich polymers of nucleotides
Nucleic acids such as DNA and RNA
Serve as the blueprints for proteins and thus control the life of a cell
The sugar and phosphate
Form the backbone for the nucleic acid or polynucleotide
DNA consists of two polynucleotides
Twisted around each other in a double helix
RNA, by contrast, is a single-stranded polynucleotideThree types of RNA
1 accatttgtt ggcagagaca gatggtcagt ctggaggatg acgtggcgtg aacatctgcc
61 tggagtcccg cccctgccca gaacccttcc tgagacctcg ccggccttgt tttattcaaa
121 gacagagaag accaaagcat tgcctgccag agctttgttt tatatattta ttcatctggg
181 aggcagaaca ggcttcggac agtgcccatg caatggcttg ggttgggatt ttggtttctt
241 cctttcctgt gaaggataag agaaacaggc ccggggggac caggatgaca cctccatttc
301 tctccaggaa gttttgagtt tctctccacc gtgacacaat cctcaaacat ggaagatgaa
361 agggcagggg atgtcaggcc cagagaagca agtggctttc aacacacaac agcagatggc
421 accaacggga ccccctggcc ctgcctcatc caccaatctc taagccaaac ccctaaactc
481 aggagtcaac gtgtttacct cttctatgca agccttgcta gacagccagg ttagcctttg
541 ccctgtcacc cccgaatcat gacccaccca gtgtctttcg aggtgggttt gtaccttcct
601 taagccagga aagggattca tggcgtcgga aatgatctgg ctgaatccgt ggtggcaccg
661 agaccaaact cattcaccaa atgatgccac ttcccagagg cagagcctga gtcaccggtc
721 acccttaata tttattaagt gcctgagaca cccggttacc ttggccgtga ggacacgtgg
781 cctgcaccca ggtgtggctg tcaggacacc agcctggtgc ccatcctccc gacccctacc
841 cacttccatt cccgtggtct ccttgcactt tctcagttca gagttgtaca ctgtgtacat
901 ttggcatttg tgttattatt ttgcactgtt ttctgtcgtg tgtgttggga tgggatccca
961 ggccagggaa agcccgtgtc aatgaatgcc ggggacagag aggggcaggt tgaccgggac
1021 ttcaaagccg tgatcgtgaa tatcgagaac tgccattgtc gtctttatgt ccgcccacct
1081 agtgcttcca cttctatgca aatgcctcca agccattcac ttccccaatc ttgtcgttga
1141 tgggtatgtg tttaaaacat gcacggtgag gccgggcgca gtggcctcac gcctgtaatc
Kuis 1
Molekul Penyusun Sel
1. Berikut ini merupakan molekul yang bersifat hidrofobik adalah
A. molekul polar dan hidrokarbon
B. Ion-ion dan hidrokarbon
C. Molekul non polar dan ion-ion
D. Molekul polar dan ion-ion
E. Bukan salah satu pernyataan diatas
2. Proses sintesis dimana senyawa monomer terikat secara kovalen disebut :
A. Hidrolisis
B. Isomerisasi
C. Kondensasi
D. Ikatan glikosidik
E. Ikatan ester
3. Manakah diatara senyawa berikut ini yang umumnya dianggap sebagai bentuk C inorganik?
A. CO2
B. C2H4
C. CH3COOH
D. C2H4 dan CH3COOH
E. Semua benar
4. Karbon umumnya merupakan rangka penyusun molekul organik karena
A. dapat membentu ikatan kovalen maupun ikatan ionik
B. ikatan kovalennya tersusun dalam sytuktur tiga dimensi yang tak teratur
C. Ikatan kovalennya merupakan ikatan yang terkuat
D. dapat terikat pada sejumlah besar atom dan elemen-elemen lain
E. Semua ikatan yang terbentuk bersifat polar
5. Struktur protein yang dapat dipengaruhi oleh ikatan hidrogen adalah
A. Struktur primer dan sekunder
B. Struktur primer dan tersier
C. Struktur sekunder, tersier dan kuartener
D. Struktur primer, sekunder dan tersier
E. Semua struktur protein
6. Asam lemak jenuh dikatakan demikian karena jenuh dengan
A. Hidrogen
B. Air
C. Gugus hidroksil
D. Gliserol
E. ikatan ganda
7. Asam lemak merupakan komponen dari
A. fosfolipid dan karotenoid
B. karotenoid dan triacylgliserol
C. Steroid dan triacylgliserol
D. Fosfolipid dan triacylgliserol
E. karotenoid dan steroid
8. Cadangan karbohidrat pada tanaman ada dalam bentuk……………, sedangkan pada hewan berupa senyawa…………..
9. Protein adalah molekul kompleks yang tersusun dari sub-unit sederhana yang disebut………….., dan terikat satu dengan yang lain dengan ikatan……………..
10. Nukleotida tersusun daria)…………………………..,b)…………………………dan c)…………………
Jawaban
1. E
2. C
3.
1. Berikut ini merupakan molekul yang bersifat hidrofobik adalah
A. molekul polar dan hidrokarbon
B. Ion-ion dan hidrokarbon
C. Molekul non polar dan ion-ion
D. Molekul polar dan ion-ion
E. Bukan salah satu pernyataan diatas
2. Proses sintesis dimana senyawa monomer terikat secara kovalen disebut :
A. Hidrolisis
B. Isomerisasi
C. Kondensasi
D. Ikatan glikosidik
E. Ikatan ester
3. Manakah diatara senyawa berikut ini yang umumnya dianggap sebagai bentuk C inorganik?
A. CO2
B. C2H4
C. CH3COOH
D. C2H4 dan CH3COOH
E. Semua benar
4. Karbon umumnya merupakan rangka penyusun molekul organik karena
A. dapat membentu ikatan kovalen maupun ikatan ionik
B. ikatan kovalennya tersusun dalam sytuktur tiga dimensi yang tak teratur
C. Ikatan kovalennya merupakan ikatan yang terkuat
D. dapat terikat pada sejumlah besar atom dan elemen-elemen lain
E. Semua ikatan yang terbentuk bersifat polar
5. Struktur protein yang dapat dipengaruhi oleh ikatan hidrogen adalah
A. Struktur primer dan sekunder
B. Struktur primer dan tersier
C. Struktur sekunder, tersier dan kuartener
D. Struktur primer, sekunder dan tersier
E. Semua struktur protein
6. Asam lemak jenuh dikatakan demikian karena jenuh dengan
A. Hidrogen
B. Air
C. Gugus hidroksil
D. Gliserol
E. ikatan ganda
7. Asam lemak merupakan komponen dari
A. fosfolipid dan karotenoid
B. karotenoid dan triacylgliserol
C. Steroid dan triacylgliserol
D. Fosfolipid dan triacylgliserol
E. karotenoid dan steroid
8. Cadangan karbohidrat pada tanaman ada dalam bentuk……………, sedangkan pada hewan berupa senyawa…………..
9. Protein adalah molekul kompleks yang tersusun dari sub-unit sederhana yang disebut………….., dan terikat satu dengan yang lain dengan ikatan……………..
10. Nukleotida tersusun daria)…………………………..,b)…………………………dan c)…………………
Jawaban
1. E
2. C
3.
The interaction of life: EcologyIntroduction to Ecology: Population Ecology
Learning Objectives:
Define ecology and distinguish among the following ecological levels: population, community, ecosystem, landscape, and biosphere.
Define population density and dispersion and describe the main type of population dispersion.
Explain the four factors (natality, mortality, immigration and emigration) that produce changes in population size and solves simple problems involving this changes.
Define intrinsic rate of increase and explain the J-shaped growth curves (exponential population growth).
Planet bumi
Biological organizations: hierarchical functional structure
Populasi
Komunitas
Ekosistem
Lanscape
Biome
Ekosfer (Biosfer)
Population Ecology
Population properties:
Population density
Population dispersion
Population size
Introduction
Ecology: the science that studies interactions among organisms (biotic factors) and between organisms and their non living physical environment (abiotic factors: water, temperature, pH, wing, chemical nutrient).
Abiotic factors: Earth scinece, geology, chemistry, oceanography, climatology, and meteorology
Mathematical models describe population growth:
On a global scale: 2 factors determine the population size:
natality: the rate at which individuals produce offspring (the average per capita birth rate) : e.g. number of birth per 1000 people per year).
mortality:the rate at which individuals die (the average per capita deah rate): e.g. number of death rate per 1000 people per year.
On a local population size determined by:
the average per capita birth rate (b)
the average per capita death rate (d)
the average per capita immigrant rate (i)
the average per capita emigrant rate (e)
The average growth rate:
N/t = N (b-d)
N: the changes in number of individuals in the population
t : the change in time
N : the number of individuals in the existing population
The growth rate (r) : the rate of change (increase or decrease) of a population on a per capita basis is the birth rate minus the death rate.
r = (b – d)
Global Population
Example: N = 10,000 people, 200 birth rate per year ( 20 birth per 1000 people) and 100 death per year (10 death per 1000 people).
r = 20/1000 – 10/1000
= 10/1000 = 0.001 (1% per year)
Local population:
r = (b– d ) + (i –e)
Example: A population of 10,000 that has 200 birth (20 per 1000), 100 death (10 per 1000), 10 immigrants (1 per 1000), and 100 emigrants (10 per 1000) in a given year.
r = ((0.02 – 0.010) + (0.001 – 0.010)
= 0.001 or 0.1% per year
Instantaneous growth rate:
N/t dN/dt
dN/dt = rN
solving for N: Nt = No. ert
Nt : number of individuals in at t time
No : number of individuals at the beginning ( t = 0)
r : instantaneous growth rate
e : base of natural logarithms ( 2.71828).
solving for r:
ln Nt – ln No
r = ----------------
t
Pertumbuhan Populasi
COMMUNITY ECOLOGY
Learning objectives:
Characterize a community and distinguish between a community and ecosystem.
Define ecological niche, distinguish between an organism’s fundamental niche and its realized niche. and give several examples of limiting resources that might affect an organism’s ecological niche.
Introduction
Community: ?
Community structure : ?
Community functioning
Community ecology:
Ecosystem
Community
Communities contain autotrophs and heterotrophs
Primary producers (autotrophs)
Consumers (heterotrophs)
Primary consumers (herbivores)
Secondary consumers (carnivores)
Tertiary consumers (carnivores)
Omnivores
Detritus feeders (detritivores)
Decomposers (saprotrophs)
Ecosystems and Biosphere
Learning Objectives:
Compare how matter and energy operate in ecosystems.
Summarize the concept of energy flow through a foodweb.
Draw and explain typical pyramids of numbers, biomass and energy.
Introduction
Ecosystems
Biosphere
Ecologists study:
energy flow,
cycling of nutrients,
effects of natural & human induced disturbances
EOLOGY AND THE GEOGRAPHY OF LIFE
Learning objectives:
Define biome and briefly describe the nine major terrestrial biomes, giving attention to the climate, soil and characteristic plants and animals of each.
Describe at least one human effect on each of the biomes discussed.
Introduction
Climate: temperature and precipitation many different
environments
Natural selection: organism’s to survive and reproduce
abiotic & biotic factors act to eliminate the least-fit
individuals in a given population better adapted
org.
Biomes are largely distinguished by their dominant form of vegetation.
biome: a large, relatively distinct terrestrial region
characterized by similar climate, soil, plants, and animals regardless of where it occurs.
a number of interacting ecosystems
temperature and precipitation: the most important factors ! (Fig. 54-1, p. 1206).
Near the poles: temperture is the most overriding climate factors.
Temperate & tropical regions: precipitation more significant than temperature (Fig. 54-2, p.1207).
Climate factors to which biomes are sensitive:
tempereture extreems
rapid temperature changes
floods
droughts
strong wind
fires
Charachteristics in terms of:
climate
soil
plants
animals
Nine major biomes:
Tundra
Taiga
Temperate rain forest
Temperate deciduous forest
Temperate grassland
Chapparal
Dessert
Savana
Tropical rain forest
Major Biomes
Tundra Map
Tundra
Tundra in Summer
Taiga map
Taiga
Taiga
Desert map
Desert
Desert
Dry Desert
Tropical Rain Forest
Tropical Rain Forest
Savana
Savana
Savana
Define ecology and distinguish among the following ecological levels: population, community, ecosystem, landscape, and biosphere.
Define population density and dispersion and describe the main type of population dispersion.
Explain the four factors (natality, mortality, immigration and emigration) that produce changes in population size and solves simple problems involving this changes.
Define intrinsic rate of increase and explain the J-shaped growth curves (exponential population growth).
Planet bumi
Biological organizations: hierarchical functional structure
Populasi
Komunitas
Ekosistem
Lanscape
Biome
Ekosfer (Biosfer)
Population Ecology
Population properties:
Population density
Population dispersion
Population size
Introduction
Ecology: the science that studies interactions among organisms (biotic factors) and between organisms and their non living physical environment (abiotic factors: water, temperature, pH, wing, chemical nutrient).
Abiotic factors: Earth scinece, geology, chemistry, oceanography, climatology, and meteorology
Mathematical models describe population growth:
On a global scale: 2 factors determine the population size:
natality: the rate at which individuals produce offspring (the average per capita birth rate) : e.g. number of birth per 1000 people per year).
mortality:the rate at which individuals die (the average per capita deah rate): e.g. number of death rate per 1000 people per year.
On a local population size determined by:
the average per capita birth rate (b)
the average per capita death rate (d)
the average per capita immigrant rate (i)
the average per capita emigrant rate (e)
The average growth rate:
N/t = N (b-d)
N: the changes in number of individuals in the population
t : the change in time
N : the number of individuals in the existing population
The growth rate (r) : the rate of change (increase or decrease) of a population on a per capita basis is the birth rate minus the death rate.
r = (b – d)
Global Population
Example: N = 10,000 people, 200 birth rate per year ( 20 birth per 1000 people) and 100 death per year (10 death per 1000 people).
r = 20/1000 – 10/1000
= 10/1000 = 0.001 (1% per year)
Local population:
r = (b– d ) + (i –e)
Example: A population of 10,000 that has 200 birth (20 per 1000), 100 death (10 per 1000), 10 immigrants (1 per 1000), and 100 emigrants (10 per 1000) in a given year.
r = ((0.02 – 0.010) + (0.001 – 0.010)
= 0.001 or 0.1% per year
Instantaneous growth rate:
N/t dN/dt
dN/dt = rN
solving for N: Nt = No. ert
Nt : number of individuals in at t time
No : number of individuals at the beginning ( t = 0)
r : instantaneous growth rate
e : base of natural logarithms ( 2.71828).
solving for r:
ln Nt – ln No
r = ----------------
t
Pertumbuhan Populasi
COMMUNITY ECOLOGY
Learning objectives:
Characterize a community and distinguish between a community and ecosystem.
Define ecological niche, distinguish between an organism’s fundamental niche and its realized niche. and give several examples of limiting resources that might affect an organism’s ecological niche.
Introduction
Community: ?
Community structure : ?
Community functioning
Community ecology:
Ecosystem
Community
Communities contain autotrophs and heterotrophs
Primary producers (autotrophs)
Consumers (heterotrophs)
Primary consumers (herbivores)
Secondary consumers (carnivores)
Tertiary consumers (carnivores)
Omnivores
Detritus feeders (detritivores)
Decomposers (saprotrophs)
Ecosystems and Biosphere
Learning Objectives:
Compare how matter and energy operate in ecosystems.
Summarize the concept of energy flow through a foodweb.
Draw and explain typical pyramids of numbers, biomass and energy.
Introduction
Ecosystems
Biosphere
Ecologists study:
energy flow,
cycling of nutrients,
effects of natural & human induced disturbances
EOLOGY AND THE GEOGRAPHY OF LIFE
Learning objectives:
Define biome and briefly describe the nine major terrestrial biomes, giving attention to the climate, soil and characteristic plants and animals of each.
Describe at least one human effect on each of the biomes discussed.
Introduction
Climate: temperature and precipitation many different
environments
Natural selection: organism’s to survive and reproduce
abiotic & biotic factors act to eliminate the least-fit
individuals in a given population better adapted
org.
Biomes are largely distinguished by their dominant form of vegetation.
biome: a large, relatively distinct terrestrial region
characterized by similar climate, soil, plants, and animals regardless of where it occurs.
a number of interacting ecosystems
temperature and precipitation: the most important factors ! (Fig. 54-1, p. 1206).
Near the poles: temperture is the most overriding climate factors.
Temperate & tropical regions: precipitation more significant than temperature (Fig. 54-2, p.1207).
Climate factors to which biomes are sensitive:
tempereture extreems
rapid temperature changes
floods
droughts
strong wind
fires
Charachteristics in terms of:
climate
soil
plants
animals
Nine major biomes:
Tundra
Taiga
Temperate rain forest
Temperate deciduous forest
Temperate grassland
Chapparal
Dessert
Savana
Tropical rain forest
Major Biomes
Tundra Map
Tundra
Tundra in Summer
Taiga map
Taiga
Taiga
Desert map
Desert
Desert
Dry Desert
Tropical Rain Forest
Tropical Rain Forest
Savana
Savana
Savana
Bioteknologi
Bioteknologi
Bioteknologi: Proses pemanfaatan sistim hayati untuk menghasilkan
barang atau jasa
Bioteknologi konvensional: industri pangan, obat-obatan,
pengolahan limbah, industri minuman
dengan menggunakan jasad yang
kodratnya tidak diubah.
Bioteknologi modern: pemanfaatan jasad yang sudah diubah
kodratnya melalui teknik rekayasa genetika,
misalnya penghasilan insulin manusia oleh
bakteri Escherichia coli, Tanaman kapas yang
tahan terhadap hama karena mengandung gen
toksin yang berasal dari bakteri (Bacillus
thuringiensis).
Bioteknologi Modern
Rekayasa genetika: pengubahan kodrat suatu jasad dengan mengubah sifat genetik melalui pemindahan gen dari satu jasad ke jasad lain.
Contoh: bakteri E. coli dapat menghasilkan insulin manusia karena telah memiliki gen yang mengkode insulin yang berasal dari manusia.
Manfaat Bioteknologi
Membuat terobosan dalam memecahkan masalah yang dihadapi dalam berbagai bidang, misalnya:
Kesehatan/obat-obatan
Pertanian/perkebunan/petenakan
Lingkungan
Industri pangan
pertambangan
Produksi Insulin oleh bakteri
Masalah:
Insulin diperlukan untuk penderita diabetes mellitus
Sumber insulin sulit diperoleh
Jumlah sedikit dan mahal
Sumber berupa hewan memerlukan jumlah yang banyak dan waktu lama
Rekayasa genetika
Gen yang mengkode insulin pada manusia di isolasi melalui teknik molecular cloning
Gen lalu dipindahkan ke dalam sel bakteri E. coli
Bakteri E. coli yang telah menerima gen insulin manusia disebut mikrobia yang telah direkayasa secara genetika (Genetically Engineered Microorganism = GEM)
E.coli yang tumbuh akan menghasilkan insulin
Keunggulan
Bakteri dapat tumbuh dalam tempat yang sempit (fermenter)
Kultivasi bakteri jauh lebih sederhana dari pada memelihara hewan
Tumbuh cepat ( 24 jam)
Dapat dihasilkan dalam jumlah yang besar
Hasilnya: dapat menolong penderita diabetes mellitus
Metode Rekayasa genetika
Isolasi dan pemurnian gen
Karakterisasi dan identifikasi gen
Penyambungan gen (ligasi) dengan vektor (plasmid) plasmid rekombinan
Memasukkan plasmid rekombinan ke dalam jasad penerima (transformasi)
Pemilihan sel penerima gen (seleksi rekombinan)
Penumbuhan sel rekombinan (ekspresi gen)
Teknik Rekayasa Genetika
gen cloning
↓
Ligasi
↓
Transformasi
↓
Seleksi transforman
↓
Kultivasi transforman
↓
Produksi insulin
Bioteknologi: Proses pemanfaatan sistim hayati untuk menghasilkan
barang atau jasa
Bioteknologi konvensional: industri pangan, obat-obatan,
pengolahan limbah, industri minuman
dengan menggunakan jasad yang
kodratnya tidak diubah.
Bioteknologi modern: pemanfaatan jasad yang sudah diubah
kodratnya melalui teknik rekayasa genetika,
misalnya penghasilan insulin manusia oleh
bakteri Escherichia coli, Tanaman kapas yang
tahan terhadap hama karena mengandung gen
toksin yang berasal dari bakteri (Bacillus
thuringiensis).
Bioteknologi Modern
Rekayasa genetika: pengubahan kodrat suatu jasad dengan mengubah sifat genetik melalui pemindahan gen dari satu jasad ke jasad lain.
Contoh: bakteri E. coli dapat menghasilkan insulin manusia karena telah memiliki gen yang mengkode insulin yang berasal dari manusia.
Manfaat Bioteknologi
Membuat terobosan dalam memecahkan masalah yang dihadapi dalam berbagai bidang, misalnya:
Kesehatan/obat-obatan
Pertanian/perkebunan/petenakan
Lingkungan
Industri pangan
pertambangan
Produksi Insulin oleh bakteri
Masalah:
Insulin diperlukan untuk penderita diabetes mellitus
Sumber insulin sulit diperoleh
Jumlah sedikit dan mahal
Sumber berupa hewan memerlukan jumlah yang banyak dan waktu lama
Rekayasa genetika
Gen yang mengkode insulin pada manusia di isolasi melalui teknik molecular cloning
Gen lalu dipindahkan ke dalam sel bakteri E. coli
Bakteri E. coli yang telah menerima gen insulin manusia disebut mikrobia yang telah direkayasa secara genetika (Genetically Engineered Microorganism = GEM)
E.coli yang tumbuh akan menghasilkan insulin
Keunggulan
Bakteri dapat tumbuh dalam tempat yang sempit (fermenter)
Kultivasi bakteri jauh lebih sederhana dari pada memelihara hewan
Tumbuh cepat ( 24 jam)
Dapat dihasilkan dalam jumlah yang besar
Hasilnya: dapat menolong penderita diabetes mellitus
Metode Rekayasa genetika
Isolasi dan pemurnian gen
Karakterisasi dan identifikasi gen
Penyambungan gen (ligasi) dengan vektor (plasmid) plasmid rekombinan
Memasukkan plasmid rekombinan ke dalam jasad penerima (transformasi)
Pemilihan sel penerima gen (seleksi rekombinan)
Penumbuhan sel rekombinan (ekspresi gen)
Teknik Rekayasa Genetika
gen cloning
↓
Ligasi
↓
Transformasi
↓
Seleksi transforman
↓
Kultivasi transforman
↓
Produksi insulin
Cytoskeleton
Tubulin and actin have been highly conserved
Microtubules
Centrosome (Microtubule-organizing centre/MTOC)
Contain hundreds of ring-shaped structures formed from another type of tubulin ( tubulin) – serves as a starting point for the growth of microtubule
ß-tubulin bind to -tubulin, the (-) end will embedded in the centrosome and growth occurs at the (+) end
Growing microtubules show dynamic instability, due to the capacity of tubulin molecules to hydrolyze GTP
Chemicals affecting tubulin growth
Colchicine : prevent polimerization of tubulin into microtubules
Taxol : binds tightly to microtubules & prevent them from losing subunits (microtubules can grow but can not shrink, also arrest dividing cells in mitosis)
Motor protein drive intracellular transport
Cytoplasm is in continual motion, mitochondria and small organelles show saltatory movement : move for a short period, stop and then start again
Generated by motor proteins
Actin-based motor protein
Microfilaments
Actin polymerization in vitro proceeds in three steps
Actin monomer binding proteins
Actin filaments allow eucaryotic cells to adopt a variety of shapes and perform a variety of functions
Drugs that affect actin filament and microtubules
Certain toxin can inhibit actin filament functions
Cytochalasin : prevent actin polymerization
Jasplakinolides : promote polymerization
Intermediate filaments
Grouping of intermediate filaments
1) keratin filaments in epithelial cells
2) vimentin and vimentin-related filaments in connective tissue cells, muscle cells, and supporting cells of the nervous system
3) neurofilaments in nerve cells
4) nuclear lamins which strengthen the nuclear
membrane of all animal cells
Keratin filaments
Formed from a mixture of different keratin subunit
Specialized keratins occur in hair, feathers, and claws
Span the interior of epithelial cells
Neurofilaments
Vimentin-like filaments
Filament intermediate
Filament intermediate can be reinforced by accessory proteins such as plectin that link i.f. to microtubules, actin filament and adhesive structures in the desmosome
Lamins : i.f found inside the inner nuclear membrane
* disassemble and re-form at each cell division
(controlled by phosphorilation and
dephosphorilation of lamins by protein kinase)
phosphorilasi filament fall apart
dephosphorilasi lamins reassemble
Microtubules
Centrosome (Microtubule-organizing centre/MTOC)
Contain hundreds of ring-shaped structures formed from another type of tubulin ( tubulin) – serves as a starting point for the growth of microtubule
ß-tubulin bind to -tubulin, the (-) end will embedded in the centrosome and growth occurs at the (+) end
Growing microtubules show dynamic instability, due to the capacity of tubulin molecules to hydrolyze GTP
Chemicals affecting tubulin growth
Colchicine : prevent polimerization of tubulin into microtubules
Taxol : binds tightly to microtubules & prevent them from losing subunits (microtubules can grow but can not shrink, also arrest dividing cells in mitosis)
Motor protein drive intracellular transport
Cytoplasm is in continual motion, mitochondria and small organelles show saltatory movement : move for a short period, stop and then start again
Generated by motor proteins
Actin-based motor protein
Microfilaments
Actin polymerization in vitro proceeds in three steps
Actin monomer binding proteins
Actin filaments allow eucaryotic cells to adopt a variety of shapes and perform a variety of functions
Drugs that affect actin filament and microtubules
Certain toxin can inhibit actin filament functions
Cytochalasin : prevent actin polymerization
Jasplakinolides : promote polymerization
Intermediate filaments
Grouping of intermediate filaments
1) keratin filaments in epithelial cells
2) vimentin and vimentin-related filaments in connective tissue cells, muscle cells, and supporting cells of the nervous system
3) neurofilaments in nerve cells
4) nuclear lamins which strengthen the nuclear
membrane of all animal cells
Keratin filaments
Formed from a mixture of different keratin subunit
Specialized keratins occur in hair, feathers, and claws
Span the interior of epithelial cells
Neurofilaments
Vimentin-like filaments
Filament intermediate
Filament intermediate can be reinforced by accessory proteins such as plectin that link i.f. to microtubules, actin filament and adhesive structures in the desmosome
Lamins : i.f found inside the inner nuclear membrane
* disassemble and re-form at each cell division
(controlled by phosphorilation and
dephosphorilation of lamins by protein kinase)
phosphorilasi filament fall apart
dephosphorilasi lamins reassemble
Langganan:
Postingan (Atom)